相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、已知集合 .(1)、当时,求;(2)、若 , 求实数的取值范围.
-
2、函数的定义域为集合 , , .(1)、求 , .(2)、若 , 求实数m的取值范围.
-
3、已知右焦点为的椭圆上的三点A,B,C满足直线AB过坐标原点,若于点 , 且 , 则的离心率是.
-
4、一般认为,民用住宅的窗户面积与地板面积的比值越大,采光效果越好.现有某酒店计划对一房间进行改造升级,已知该房间原地板面积为60平方米,窗户面积为20平方米.若同时增加窗户与地板的面积,且地板增加的面积恰好是窗户增加的面积的倍,要求改造后的采光效果不比改造前的差,则实数的最大取值为.
-
5、若 , 则 .
-
6、设 , , , , 记为平行四边形内部(不包含边界)的“格点”的个数(格点是指横坐标和纵坐标都是整数的点),则函数可能的值为( )A、 B、 C、 D、
-
7、已知函数的定义域为 , 满足:①对于任意的 , , 都有 , ②存在 , , 使得 , 则( )A、 B、 C、当时,为奇函数 D、当时,为偶函数
-
8、已知 , 则的最小值为( )A、 B、 C、4 D、
-
9、关于的不等式的解集为( )A、 B、 C、 D、
-
10、命题“ , 使得”的否定是( )A、“ , 使得” B、“ , 使得” C、“ , 使得” D、“ , 使得”
-
11、命题“至少有一个实数 , 使得”的否定是( )A、 , B、 , C、 , D、 ,
-
12、在正四棱柱中, , 点在线段上,且 , 点为BD中点,则点到直线EF的距离( )A、 B、 C、 D、
-
13、直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是( )A、 B、 C、 D、
-
14、若双曲线满足 , 则的离心率为( )A、 B、 C、 D、
-
15、已知直线与直线平行,则( )A、±2 B、2 C、-2 D、
-
16、已知集合 , 则( )A、 B、 C、 D、
-
17、已知函数是定义在上的奇函数,且当时, , 函数在轴左侧的图象如图所示,请根据图象;(1)、画出在轴右侧的图象,并写出函数的单调区间;(2)、写出函数的解析式;(3)、若函数 , 求函数的最小值.
-
18、已知函数 , 且其定义域为 .(1)、判定函数的奇偶性;(2)、利用单调性的定义证明:在上单调递减;(3)、解不等式 .
-
19、已知函数(1)、求函数的解析式;(2)、求关于的不等式解集.(其中)
-
20、已知集合 , 集合.(1)、当时,求;(2)、若 , 求的取值范围.