• 1、已知递增数列an共有m项(mN*,m为定值)且各项均不为零,末项am=1.若从数列an中任取两项aiaj , 当i<j时,ajai仍是数列an中的项,则数列an的通项公式an=(用含mn的式子表示.)
  • 2、函数fx=cos2x+sinxcosx+1的最小正周期是fx0,π上的单调递减区间是.
  • 3、已知曲线y=ex1+ax3+1x=1处的切线斜率为4,则实数a的值为.
  • 4、若函数fx=xlnx12mx2x存在两个极值点x1,x2x2>x1 , 下列说法正确的是(       )
    A、m=1时满足条件 B、不存在实数m使得x1,x2均为正整数 C、x2x13时,m的最大值为3ln36 D、对任意正整数n , 均存在对应的x1,x2 , 使得n=x22x12lnx1x2
  • 5、若l是平面α的一条斜线,lα=O , 直线a平面αO直线a , 记直线l与平面α所成的角为θ , 则下列说法正确的是(       )
    A、la是一对异面直线 B、若点AB分别为直线l上和平面α内异于点O的点,则AOBθ C、MN分别是直线la上的动点,则满足MNlMNa的直线不唯一 D、过直线a有且只有唯一平面与直线l平行
  • 6、函数y=ax1aa>1的图象经过(       )
    A、第一象限 B、第二象限 C、第三象限 D、第四象限
  • 7、已知函数fx=x1,1x<1,2fx2,1x7,若关于x的方程fx=a至少有5个不等的实数解,则a的取值范围是(       )
    A、1,0 B、2,0 C、4,0 D、8,0
  • 8、已知ab>0a+2b=1 , 则a2+2b+1ab的最小值是(       )
    A、12 B、16 C、15 D、14
  • 9、若ABC中,角A,B,C所对的边分别为a,b,c,a=4,b=16,CD平分ACBABD , 且CD=4 , 则BD=(       )
    A、3 B、3 C、23 D、33
  • 10、设函数fx=cosωx+φω>0,φ<π2为偶函数.当x1,x2满足fx1fx2=2时,x1x2有最小值2,则ωφ的值分别是(       )
    A、ω=π,φ=0 B、ω=π,φ=π2 C、ω=π2,φ=π2 D、ω=π2,φ=0
  • 11、若一个球的体积和表面积数值相等,则该球的半径r的数值为(       )
    A、2 B、3 C、4 D、3
  • 12、已知向量a=1,1,b=2,λ , 且b=5,λ>0 , 则ab=(       )
    A、1 B、2 C、1 D、0
  • 13、已知z=21i1+i,z¯z的共轭复数,则z¯=(       )
    A、0 B、2i C、2 D、2
  • 14、已知A=xx1,B={xx<5,xN} , 则AB=(       )
    A、0,1 B、1 C、0,1 D、0,1
  • 15、曼哈顿距离是一个充满神秘与奥秘的距离,常用于需要按照网格布局移动的场景,例如无人驾驶出租车行驶、物流配送等.在算法设计中,曼哈顿距离也常用于图像处理和路径规划等问题.曼哈顿距离用于标明两个点在空间(平面)直角坐标系上的绝对轴距总和.例如在平面直角坐标系内有两个点Ax1,y1,Bx2,y2,它们之间的曼哈顿距离D(A,B)=x1x2+y1y2.
    (1)、已知点A(2,1),B(3,3) , 求D(A,B)的值;
    (2)、已知平面直角坐标系内一定点A(2,1) , 动点P满足D(A,P)=2 , 求动点P围成的图形的面积:
    (3)、已知空间直角坐标系内一定点A(2,1,3) , 动点P满足D(A,P)=m(m>0) , 若动点P围成的几何体的体积是323 , 求m的值.
  • 16、已知集合A=1,a2,a2a1 , 若1A , 则实数a=
  • 17、如图,在四棱锥PABCD中,平面PAB平面ABCD,PAAB,ABCD , 且AB=2CD=2AD=2BC=2AP=2

       

    (1)、证明:平面PAC平面PBC
    (2)、求平面PAD与平面PBC夹角的正弦值.
  • 18、已知函数fx=ax+1a,0x12x2ax,1<x2 , 若x1,x20,2,x1x2 , 都有fx2fx1x2x1>0成立,则a的取值范围为(       )
    A、0,2 B、,1 C、0,1 D、0,+
  • 19、下列说法正确的是(     )
    A、a=1”是“直线a2xy+1=0与直线xay2=0互相垂直”的充要条件 B、a=2”是“直线ax+2y+a2=0与直线x+a+1y+1=0互相平行”的充要条件 C、直线xsinα+y+2=0的倾斜角θ的取值范围是0,π43π4,π D、若点A1,0B0,2 , 直线l过点P2,1且与线段AB相交,则l的斜率k的取值范围是12k1
  • 20、正实数ab满足1+a2b24a=72 , 则1+ab的最小值为
上一页 876 877 878 879 880 下一页 跳转