• 1、已知函数f(x)=3tan(ωx+π3)(ω>0)图象的两个相邻对称中心之间的距离为π4 , 则ω=
  • 2、已知函数y=2cos(ωxπ4)(ω>0)在区间(π4,π2)上有且仅有一个零点,则ω的取值范围为
  • 3、已知x=112是函数f(x)=sin(3πx+φ)(0<φ<π2)的一条对称轴,f(x)在区间(t,t)(t>0)内恰好存在3个对称中心,则t的取值范围为
  • 4、已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<π2)的部分图象如图所示,则下列说法正确的是(    )

    A、函数f(x)的最小正周期为π2 B、sinφ=22 C、函数f(x)(π2,π)上单调递增 D、方程f(x)=sin(2x+π4)(0xπ)的解为3π87π8
  • 5、已知函数f(x)=sin(2x+π4)+23cos2(x+π8) , 则以下结论正确的为(    )
    A、f(x)的最小正周期为π B、f(x)图象关于点(5π24,3)对称 C、f(x)(4π3,3π2)上单调递减 D、f(x)图象向左平移11π24个单位后,得到的图象所对应的函数为偶函数
  • 6、已知函数f(x)=xtanxg(x)=ln(e2x+1)x1 , 则下列说法正确的是(    )
    A、f(x)为偶函数,g(x)的图象关于直线x=0对称 B、f(x)的图象关于y轴对称,g(x)不是对称图形 C、f(x)的图象关于原点对称,g(x)的图象关于点(0,1)对称 D、f(x)的图象关于原点对称,g(x)的图象关于y轴对称
  • 7、下列函数是偶函数的是(   )
    A、y=exx2x2+1 B、y=cosx+x2x2+1 C、y=exxx+1 D、y=sinx+4xe|x|
  • 8、已知函数f(x)=cos(2xφ) , 则“φ=π2+kπkZ”是“f(x)为偶函数”的(    )
    A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
  • 9、记ABC的内角ABC的对边分别为abc , 已知a2b2c2=a2+b2c2ab , 若C=π4 , 则A=;若ABC为锐角三角形,则abcos2B的取值范围是.
  • 10、函数f(x)=cos2x+3cosx1(x[π3,2π3])的值域是.
  • 11、古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f(x)=cotx , 其中cotx=tan(π2x) , 则下列关于余切函数的说法正确的是(    )
    A、定义域为{xxkπ,kZ} B、在区间(π2,π)上单调递增 C、与正切函数有相同的对称中心 D、将函数y=tanx的图象向右平移π2个单位可得到函数y=cotx的图象
  • 12、已知函数f(x)=3sin(ωx+π3),ω>0 , 则下列说法正确的是(    )
    A、f(x)的最大值为2 B、函数f(x)的图象关于直线x=1ω(kπ+π6)(kZ)对称 C、不等式f(x)>32的解集为(2kπω,(6k+1)π3ω)(kZ) D、f(x)在区间[π2,π2]上单调递增,则ω的取值范围是(0,13]
  • 13、关于函数f(x)=|cosx|+cos|2x|有下列四个结论:

    f(x)的值域为[1,2]

    f(x)[0,π2]上单调递减;

    f(x)的图象关于直线x=3π4于对称;

    f(x)的最小正周期为π

    上述结论中,正确命题的个数有(    )

    A、1个 B、2个 C、3个 D、4个
  • 14、已知函数f(x)=|sin(2x+π3)||sin(2xπ3)| , 则f(x)在区间(π2,π2)内的零点个数为(    )
    A、0 B、1 C、2 D、3
  • 15、已知函数f(x)=sin(ωx+φ) , 如图AB是直线y=12与曲线y=f(x)的两个交点,若|AB|=π6 , 则f(π)=

  • 16、对于函数f(x)=sin2xg(x)=sin(2xπ4) , 下列说法中正确的有(    )
    A、f(x)g(x)有相同的零点 B、f(x)g(x)有相同的最大值 C、f(x)g(x)有相同的最小正周期 D、f(x)g(x)的图象有相同的对称轴
  • 17、函数y=(3x3x)cosx在区间[π2,π2]的图象大致为(    )
    A、 B、 C、 D、
  • 18、已知函数f(x)=sin(ωx+φ),(ω>0)在区间(π6,2π3)单调递增,直线x=π6x=2π3为函数y=f(x)的图像的两条相邻对称轴,则f(5π12)=(    )
    A、32 B、12 C、12 D、32
  • 19、函数y=f(x)的图象由函数y=cos(2x+π6)的图象向左平移π6个单位长度得到,则y=f(x)的图象与直线y=12x12的交点个数为(    )
    A、1 B、2 C、3 D、4
  • 20、设函数f(x)=a(x+1)21g(x)=cosx+2ax , 当x(1,1)时,曲线y=f(x)y=g(x)恰有一个交点,则a=(    )
    A、1 B、12 C、1 D、2
上一页 1203 1204 1205 1206 1207 下一页 跳转