-
1、若 , 求的值
-
2、 2025年3月26日,鄂州梁子湖马拉松在梁子湖环湖绿道举行,图为马拉松赛道补给站的分布图.小明参加志愿服务活动,从月山湖站出发,到M站时,本次志愿者服务活动结束.如果规定向东为正,向西为负,小明当天经过的站数按先后顺序依次记录如下(单位:站):+2,-1,+3,-4,+2,+3,-4,-3.
(1)、请通过计算说明M站是哪一站?(2)、若相邻两站之间的平均距离为1.1千米,求这次小明志愿服务期间行进的总路程是多少千米? -
3、若x是最大的负整数,|y|=5,z是相反数等于本身的数,求:x+y+z的值.
-
4、已知m,n互为相反数,|m+1|=0求代数式的值.
-
5、把下列各数填入相应的大括号内:
正数集合{ }; 整数集合{ };
分数集合{ }; 非负有理数集合{ }.
-
6、计算(1)、(-7)+(+5)-(-19)-(+7)(2)、;(3)、(4)、
-
7、请画出一个数轴,在数轴上标出下列各点:;并用“>”把这些数连起来.
-
8、对于有理数a,b定义一种新运算“⊙”,规定a⊙b=|a+b|+|a-b|,则(-3)⊙4=.
-
9、如果数轴上的点A对应的有理数为-2,那么与A点相距4个单位长度的点所对应的有理数为.
-
10、一瓶可乐的净含量标注为500mL.根据《定量包装商品计量监督管理办法》规定,500mL的可乐净含量允许偏差范围为±2%.如果一瓶可乐的实际净含量是502mL,记为+2mL.则当一瓶可乐的实际净含量是496mL时,则记为mL,它规定.(填“符合”或“不符合”.)
-
11、用四舍五入法取近似数:2.7682≈(精确到0.01).
-
12、 的相反数是.
-
13、下列说法:①单项式·-2xy3的次数是3;②若b<0<|b|,则|a+b|=-|a|+|b|;③几个有理数相乘,负因数的个数是奇数时,积是负数;④若则a与b互为相反数;⑤若a,b互为相反数,则;其中错误的有( )A、1个 B、2个 C、3个 D、4个
-
14、某商店举行促销活动,其促销的方式为“消费超过100元时,所购买的商品按原价打九折后,再减少30元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是( )A、90%(x-30) B、90%x-30 C、10%x-30 D、10%(x-30)
-
15、下列各式中,结果最小的是( )A、 B、 C、(-3)4 D、-34
-
16、若|a|=3,|b|=4,且a>b,则|a+b|=( )A、-1 B、7 C、1或7 D、-1或7
-
17、据报道,兰州市2024年共发放3轮7批“惠购甘肃”兰州分会场消费券,拉动消费约7790万元.其中7790万元用科学记数法可表示为( )A、元 B、元 C、元 D、7790×104元
-
18、在生产生活中,正数和负数都有现实意义.例如收入20元记作+20元,则支出10元记( )A、+10元 B、-10元 C、±10元 D、-20元
-
19、如图(1),点P,Q分别是边长为4cm的等边△ABC的边AB,BC上的动点,点P,Q同时从顶点A,B出发向点B、C运动,且它们的速度都为1cm/s.
(1)、【思考研究】连接AQ,CP交于点M,则在P,Q运动的过程中,∠CMQ的度数变化吗?若变化,请说明理由;若不变,求出它的度数;(2)、【解决问题】连接PQ,何时△PBQ是直角三角形?(3)、【拓展延伸】如图(2),若点P,Q在运动到终点后继续在射线AB,BC上运动,直线AQ,CP交点为M,则∠CMQ的度数变化吗?若变化,请说明理由;若不变,直接写出它的度数. -
20、如图,在△ABC中,AB=AC,∠BAC=36°,BD平分∠ABC交AC于点D.过点A作AE∥BC,交BD的延长线于点E.
(1)、求∠ADE的度数;(2)、判断△ADE的形状,并说明理由.