• 1、如图所示,在Rt△ABC中,∠A=30°,∠ABC=90°,将Rt△ABC绕点B逆时针方向旋转得到△A'BC' , 此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为(  )
    A、1∶2 B、1∶3 C、2∶3 D、3∶4
  • 2、如图所示,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A'B'C' , 再将△A'B'C' 绕点A'逆时针旋转一定角度,点B'恰好与点C重合,则平移的距离和旋转角的度数分别为(  )
    A、4,30° B、2,60° C、1,30° D、3,60°
  • 3、如图所示,正方形OABC的两边OA,OC分别在x轴、y轴上,点D(5,3)在边AB上,以点C为中心,把△CDB旋转90°,则旋转后点D的对应点D'的坐标是(  )
    A、(2,10) B、(-2,0) C、(2,10)或(-2,0) D、(10,2)或(-2,0)
  • 4、如图所示,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,当∠EPF在△ABC内绕点P旋转时,下列结论错误的是(  )
    A、EF=AP B、△EPF为等腰直角三角形 C、AE=CF D、S四边形AEPF=12S△ABC
  • 5、如图所示,在△ABC中,∠A=30°,将△ABC绕着点B逆时针旋转40°到△DBE的位置,则∠α的度数是(  )
     
    A、70° B、60° C、80° D、65°
  • 6、在平面直角坐标系xOy中,与点P(2x-1,x+3)关于原点成中心对称的点在第四象限内,则x的取值范围是(  )
    A、x<12 B、-3<x<12 C、x>12 D、x>-3
  • 7、如图所示,在平面直角坐标系中,点B,C,E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是(  )
    A、△ABC绕点C逆时针旋转90°,再向下平移1个单位长度 B、△ABC绕点C顺时针旋转90°,再向下平移1个单位长度 C、△ABC绕点C逆时针旋转90°,再向下平移3个单位长度 D、△ABC绕点C顺时针旋转90°,再向下平移3个单位长度
  • 8、某校区2号楼楼梯的示意图如图所示,现在要在楼梯上铺一条地毯,如果楼梯的宽度是1.8 m,那么地毯的面积为( )
    A、(a+1.8)h m2 B、(h+1.8)a m2 C、1.8(h+a)m2 D、1.8ah m2
  • 9、将如图所示的图形绕其中心旋转某一角度后会与原图形重合,这个角度不能是( )
    A、90° B、120° C、180° D、270°
  • 10、下列4个富有民族特色的窗户图形中,既不是中心对称图形也不是轴对称图形的是( )
    A、 B、 C、 D、
  • 11、综合与实践:

    【问题情境】在数学实践课上,老师让小组合作探究两个完全相同的含30 角的三角板拼图间存在的关系.

    如图,已知ABCDECACB=DCE=90 ,B=30 ,AC=DC=4.

    【操作探究】

    (1)、 如图①,当点DCB在同一条直线上时,直线AB与直线DE的位置关系是
    (2)、 如图②,将图①中的三角板DEC绕点C顺时针旋转120 ,边DE与边CB交于点G , 请判断此时ECAB的位置关系及CDG的形状,并说明理由;
    (3)、 如图③,将图①中的三角板DEC绕着点C顺时针旋转,边AB与边EC交于点M , 当CBM是以BM为腰的等腰三角形时,求AM的长.
  • 12、已知MAN=α(0<α<45) , 点BC分别在射线ANAM上,将线段BC绕点B顺时针旋转1802α 得到线段BD , 过点DAN的垂线交射线AM于点E.
    (1)、 如图①,当点D在射线AN上时,求证:CAE的中点;
    (2)、 如图②,当点DMAN内部时,作DF//AN , 交射线AM于点F , 用等式表示线段EFAC的数量关系,并证明.
  • 13、已知ABC是等腰直角三角形,ACB=90 ,点DABC所在平面内任意一点,CD绕点C逆时针旋转90 得到CE , 连接ADDEBE.
    (1)、 如图①,若点DABC内一点,求证:AD=BE
    (2)、 如图②,若点DAB边上一点,AD=5BD=12 , 求DE的长.
  • 14、在平面直角坐标系中,ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
    (1)、 若ABCA1B1C1关于原点O成中心对称,画出A1B1C1
    (2)、 将ABC绕点O顺时针旋转90 ,画出旋转后得到的A2B2C2 , 并写出点B2的坐标;
    (3)、 若在x轴上存在一点P , 满足点P到点B1与点C1的距离之和最小,请写出PB1+PC1的最小值为.
  • 15、如图,在直角三角形ABC中,ACB=90 ,A=33 ,将三角形ABC沿AB方向平移得到三角形DEF.
    (1)、 求E的度数;
    (2)、 若AE=9 cmDB=2 cm , 求CF的长.
  • 16、如图,已知ABC的顶点A(1,4)B(4,1)C(1,1).若ABC向右平移4个单位长度,再向下平移3个单位长度得到A'B'C' , 且点ABC的对应点分别是A'B'C'.
    (1)、 画出A'B'C' , 并直接写出点C'的坐标;
    (2)、 若ABC内有一点P(a,b)经过以上平移后的对应点为P' , 直接写出点P'的坐标.
  • 17、如图,在RtABC中,C=90 ,AC=3BC=4 , 点P是线段BC上的动点,连接AP , 将线段AP绕点P顺时针旋转90 得到线段DP , 连接BD , 则BD的最小值是 .
  • 18、如图,在平面直角坐标系xOy中,点A的坐标为(0,4) , 点B在第一象限内,将OAB沿x轴正方向平移得到O'A'B' , 若点A的对应点A'在直线y=45x上,则点B与其对应点B'之间的距离为.
  • 19、如图,正方形ABCD内的图形来自中国古代的太极图,圆中的黑色部分和白色部分关于正方形的中心成中心对称,设黑色部分的面积为S , 正方形的边长为2,则S= .
  • 20、麒麟水乡景区是国家4A级景区,是集田园风光和水乡风情为一体的旅游景区,盛夏的麒麟水乡秀丽端庄,千亩荷花在微风中飘曳,为了便于游客领略“人从桥上过,如在河中行”的美好意境,景区工作人员拟在如图所示的长方形荷塘上架设小桥,桥宽度忽略不计,若荷塘的长为90米,宽为50米,则小桥总长为m.
上一页 556 557 558 559 560 下一页 跳转