• 1、 如图,在菱形ABCD中,BD为对角线,CE⊥BD于点E,F为AD边的中点,连接EF,若菱形ABCD 的周长为20,则线段 EF 的长为(    )
    A、5 B、4 C、52 D、2
  • 2、为了解某品种大豆的光合作用速率,科研人员从中选取7株,在同等实验条件下,测得它们的光合作用速率(单位: μmolm-2s-1)分别为24,22,20,16,19,27,25,则这组数据的中位数为(    )
    A、20 B、21 C、22 D、23
  • 3、如图是由5个完全相同的小正方体搭成的几何体的俯视图,则这个几何体可能是(    )

    A、 B、 C、 D、
  • 4、下列计算正确的是(    )
    A、x+x2=x3 B、x-12=x2-1 C、-2x23=-8x6 D、x2x4=x8
  • 5、相关报告显示,2025年,中国人形机器人市场规模预计达82.39亿元,占全球约50%.其中82.39亿用科学记数法表示为(    )
    A、82.39×108 B、8.239×108 C、8.239×109 D、0.8239×1010
  • 6、下列四个数中,最小的数是(    )
    A、0 B、12 C、- 3 D、-1
  • 7、如图,在平面直角坐标系xOy中,一次函数y=-2x+6的图象与反比例函数 y=kxk0的图象相交于A(2,n),B两点.

    (1)、求反比例函数的表达式及点 B 的坐标;
    (2)、点C 是第三象限内的反比例函数图象上一点,当 ABC的面积最小时,求 OCAB的值;
    (3)、点P 是坐标轴上一点,若AP=AB,求点 P 的坐标.
  • 8、如图,BC是⊙O 的直径,AC是⊙O 的切线,连接AB,F是AB的中点,连接CF,AB,CF分别交⊙O于点 D,E,连接BE,DE. 
    (1)、求证: ABCBCE
    (2)、若 AB=10,tanACF=34,求⊙O 的半径和DE 的长.
  • 9、某数学项目学习小组利用无人机测量一建筑物AB 的高度,如图,无人机飞至点 P 处时距地面的高度DP为100米,此时测得该建筑物AB 的顶部B处的俯角为 45,测得该建筑物AB 的底部A处的俯角为 65 , 试根据提供的数据计算该建筑物AB 的高度.(结果精确到1米;参考数据:s sin25 0.42,cos250.91,tan250.47)
  • 10、某校想了解初三年级1000名学生周末在家体育锻炼的情况,在初三年级随机抽取了20名男生和20名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了以下数据(单位:min):

    男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 90 50 90 50 70 40;

    女生:75 30 120 70 60 100 90 40 75 60 75 75 80 90 70 80 50 80 100 90.

    统计数据,并制作了如下统计表:

    时间x

    x≤30

    30<x≤60

    60<x≤90

    90<x≤120

    男生

    2

    8

    8

    2

    女生

    1

    m

    12

    3

     

    极差

    平均数

    中位数

    众数

    男生

    a

    65.75

    65

    90

    女生

    90

    b

    75

    c

    (1)、填空:m= , a= , b=;c=
    (2)、已知该年级男女生人数差不多,根据调查的数据,估计初三年级周末在家锻炼的时间在90 min以上的同学有多少人?
    (3)、王老师看了表格数据后认为初三年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持王老师观点的理由.
  • 11、
    (1)、计算: 3-2+2sin60+3-π0+9;
    (2)、解不等式组: {2x+3>5(x-3),x-52-4x-331.
  • 12、 如图,在 ABC中,①以点C为圆心,适当长为半径作弧,分别交AC,BC于点M,N;②分别以点M,N为圆心,大于 12MN长为半径作弧,两弧在∠ACB 内部交于点 P;③作射线 CP 交AB 于点 D;④过点A 作AE⊥CD,交BC 于点 E,交 CD 于点 F.若 AE=BE,B=35, , 则∠ACB的度数为.

  • 13、在平面直角坐标系xOy中,若点 Ax1y1,Bx2y2在反比例函数 y=k2x(k0,x<0)的图象上,且 y1>y2,则x1x2(填“>”“=”或“<”).
  • 14、如图,将正五边形剪掉一个角(裁剪线不经过顶点),则∠1+∠2的度数为

  • 15、 若a,b为实数,且| a-3+b-62=0,则 a+b=.
  • 16、某快递车从公司出发,到达A驿站,卸完包裹后立即前往B驿站,再卸完包裹后按原路返回公司.快递车行驶速度恒定,在两个驿站卸包裹的时间一样.快递车离公司的路程s 与时间t的关系(部分数据)如图所示,则快递车在每个驿站卸包裹的时间为(    )
    A、4分钟 B、5分钟 C、6分钟 D、7分钟
  • 17、下列命题中是真命题的是(    )
    A、平行四边形是轴对称图形 B、一个三角形中至少有2个锐角 C、经过直线外一点,有两条直线与这条直线平行 D、一个角的补角一定大于这个角
  • 18、明代《算法统宗》有一首饮酒数学诗:“醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生,试问高明能算士,几多醇酒几多薄?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问:其中好酒、薄酒分别是多少瓶?”设有好酒x瓶,薄酒y瓶.根据题意,可列方程组为(    )
    A、{x+y=19,3x+13y=33 B、{x+y=19,x+3y=33 C、{x+y=19,13x+3y=33 D、{x+y=19,3x+y=33
  • 19、糖类、脂肪、蛋白质、无机盐、维生素和水是人体必需的六大营养物质,其中糖类、脂肪和蛋白质属于供能物质,水、无机盐和维生素是非供能物质.某种食物中的营养物质占比情况如扇形统计图所示,则下列判断正确的是(    )
    A、六大营养物质总占比为90% B、蛋白质占比最多 C、供能物质比非供能物质总占比少14% D、“蛋白质”对应的圆心角的度数为61.2°
  • 20、在平面直角坐标系中,点A(2,-6)关于x轴的对称点为A'(x,y),则x+y的值为(    )
    A、- 4 B、4 C、8 D、- 8
上一页 9 10 11 12 13 下一页 跳转