-
1、某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现,每月销售量与销售单价之间的关系可以近似地看作一次函数: , 物价部门规定这种笔记本每本的销售单价不得高于18元.(1)、当每月销售量为70本时,获得的利润为多少元;(2)、该文具店这种笔记本每月获得利润为元,求每月获得的利润元与销售单价之间的函数关系式,并写出自变量的取值范围;(3)、当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?
-
2、如图,已知是直径,且.上有两点、且 , 交于点 , 连结 , .
(1)、求的度数;(2)、求图中弧与弦围成的阴影部分的面积(结果保留π). -
3、如图,中,弦与相交于点 , , 连接 , .
(1)、求证:;(2)、连结 , 求证 -
4、已知抛物线经过点 , .(1)、求抛物线的解析式;(2)、求此抛物线的对称轴和顶点坐标.
-
5、如图,以为圆心,半径为2的圆与轴交于、两点,与轴交于 , 两点,点为上一动点,于 , 当点在的运动过程中,线段的长度的最小值为.

-
6、当时,二次函数恰好有最大值3,则.
-
7、“轮动发石车”是我国古代的一种投石工具,在春秋战国时期被广泛应用,图①是陈列在展览馆的仿真模型.图②是模型驱动部分的示意图,其中 , 的半径分别是和 , 当顺时针转动3周时,上的点随之旋转 , 则.

图① 图②
-
8、如图所示图中,为直径,弦 , 垂足为 , 若 , , 则.

-
9、在不透明的盒子中有25个除颜色外均相同的小球,每次摸球随机摸出一个球记下颜色后再放回盒中摇匀,通过大量重复试验后,发现摸到白球的频率稳定于0.4,由此估计盒子中白球的个数约为.
-
10、如果一个正多边形的一个内角为 , 则这个正多边形为正边形.
-
11、如图,在给定的中,弦的弦心距 , , 点在弦上,且 , 当面积的为最大时,的长为( )
A、 B、 C、 D、 -
12、已知直线和抛物线的函数图象如图所示,且抛物线与轴交于点、 , 抛物线与直线交点的横坐标为1和 , 那么不等式的解集是( )
A、 B、或 C、 D、 -
13、如图,将半径为6的沿折叠,使得折痕垂直半径 , 当恰好经过的三等分点(靠近端点)时,折痕长为( )
A、 B、 C、 D、 -
14、二次函数的图象如图所示,对称轴为直线 , 下列结论错误的是( )
A、 B、 C、 D、 -
15、如图,、、、在上,是的直径.若 , 则的度数是( )
A、 B、 C、 D、 -
16、一个不透明袋子中装有除颜色外完全相同的3个红球和2个白球,现从袋子中先后摸出两个球(不放回),则两个球颜色不同的概率为( )A、 B、 C、 D、
-
17、在中, , , , 以为圆心,为半径作 , 则点与的位置关系是( )A、点在内 B、点在上 C、点在外 D、无法确定
-
18、对于的图象下列叙述正确的是( )A、顶点作标为 B、对称轴为:直线 C、当时,随增大而减小 D、函数的最小值是2
-
19、如图,在数轴上,点A表示-2,点B表示8,点P从原点O出发,沿数轴负方向以v1的速度向终点A运动,同时,点Q从点B 出发沿数轴负方向以v2的速度向终点O运动,运动时间为t.
(1)、求AB的长;(2)、若v1=1,v2=2,且t=1,求PQ的长;(3)、直接写出点P、Q表示的数(用含v1、v2、t的式子表示);(4)、点N为O、Q之间的动点,在P、Q运动过程中,设NQ=m,AQ=n,且n=4m,NP始终为定值,直接写出v1、v2满足的数量关系. -
20、定义:若一个三位数的十位数字减去个位数字的差恰好等于百位数字,则这个三位数叫做“和谐数”.例如三位数143,因为4-3=1,所以它是“和谐数”.(1)、判断三位数375是否为“和谐数”,并说明理由:(2)、设一个“和谐数”、的百位、十位、个位数字分别为a,b,c,直接写出a与b,c满足的数量关系:(3)、求证:任意一个“和谐数”都能被11整除.