相关试卷
-
1、《九章算术》是我国古代数学名著之一,其中记载了关于粟米分配的问题.现将14斗粟米分给4个人,每人分到的粟米斗数均为整数,每人至少分到1斗粟米,则不同的分配方法有( )A、715种 B、572种 C、312种 D、286种
-
2、已知函数满足 , 且是奇函数,若 , 则( )A、-6 B、-3 C、3 D、6
-
3、在中,角的对边分别是 , 若 , 且 , 则的最小值是( )A、 B、2 C、 D、
-
4、已知双曲线的一条渐近线的倾斜角为 , 且 , 则双曲线的离心率是( )A、 B、3 C、 D、
-
5、已知是两条不同的直线,是两个不同的平面,且 , 则“”是“”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
-
6、复数 , 则( )A、 B、 C、 D、
-
7、已知集合 , ( )A、 B、 C、 D、
-
8、设数列是集合且中的数从小到大排列而成,即 , , , , , …,现将各数按照上小下大、左小右大的原则排成如下三角形表:
(1)写出这个三角形的第四行和第五行的数;
(2)求;
(3)设是集合且中的数从小到大排列而成,已知 , 求的值.
-
9、已知常数在矩形ABCD中,AB=4,BC=4 , O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且 , P为GE与OF的交点(如图).(1)、试求P的一个坐标,并计算出P的轨迹方程.(2)、是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.
-
10、小杨上的高中食堂有3种套餐,小王第一次选择A,B,C三种套餐的概率相等,若某次选择A之后,下一次仍会在三种套餐以相等概率继续选择,若某次选择B套餐之后,下一次只会在B,C两种套餐中以相等概率去选择,在某次选择C套餐之后,以后只会选择C套餐,根据以上规则回答下列问题:(1)、试写出第n次选择时,小王选A套餐的概率表达式,并求出第3次选择B套餐的概率.(2)、试写出第n次选择时,小王选B套餐的概率表达式,并求出选A套餐的均值.
-
11、如图,在直三棱柱中,底面是等腰直角三角形, , 侧棱 , D、E分别是与的中点,点E在平面ABD上的射影是的重心.
(Ⅰ)求与平面ABD所成角的余弦值
(Ⅱ)求点到平面的距离
-
12、记锐角的内角A、B、C的对边分别为a,b,c,已知.(1)、求的值.(2)、若 , 求边上的高的取值范围.
-
13、已知设P:函数在R上单调递减.Q:不等式的解集为R,如果P和Q有且仅有一个正确,则的取值范围为.
-
14、展开式中的系数是
-
15、函数 , 向右平移3个单位得到 , 下列说法正确的是( )A、的极小值点为 B、当有两解时, C、若 , , 则 D、若 , 那么 , 且有且仅有一解
-
16、如图所示,在四个正方体中,是正方体的一条体对角线,点分别为其所在棱的中点,能得出平面的图形为( )A、
B、
C、
D、
-
17、我们知道一元二次方程可以变形为 , 展开后对应项易得到韦达定理,那么类比推理过程,在一个一元三次方程 , 则下列关于此一元三次方程的根的式子正确的是( )A、++=2 B、++= C、= D、++=7
-
18、已 知长方形的四个顶点.一质点从的中点沿与夹角为的方向射到上的点后,依次反射到上的点 (入射角等于反射角).设的坐标为.若 , 则的取值范围是( ).A、 B、 C、 D、
-
19、下列说法正确的个数为( )
①180的正因数有16个②以正方体为顶点的三棱锥有70个③+9能被7整除
④投一枚质地均匀的硬币十次,正面朝上频率在 的概率为
A、1个 B、2个 C、3个 D、4个 -
20、若方程的四个根组成一个首项为的等差数列,则( )A、1 B、 C、 D、