• 1、若直线m+1x+my2m1=0与圆x2+y2=3交于MN两点,则弦长MN的取值范围为.
  • 2、若椭圆C:x24+y23=1 , 则该椭圆的焦点到短轴端点的距离为.
  • 3、在棱长为1的正方体ABCDA1B1C1D1中,点Q为线段BB1的中点,动点P满足AP=λAC+μAD1 , 其中λ0,1,μ0,1 , 则(     )
    A、APB1D B、平面A1BC1//平面ACP C、存在点P , 使得DP=12 D、λ+μ=1时,平面QCP截正方体的截面积为98
  • 4、已知圆C:x22+y2=1 , 点P是直线l:x+y=0上一动点,过点P作圆的切线PAPB , 切点分别是AB , 则下列说法错误的是(     )
    A、C上恰有一个点到直线l的距离为12 B、切线PA长的最小值为1 C、四边形ACBP面积的最小值为2 D、直线AB恒过定点32,12
  • 5、已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1F2 , 过F1作直线l与椭圆相交于MN两点,MF2N=90 , 且4F2N=3F2M , 则椭圆的离心率为(       )
    A、13 B、12 C、33 D、55
  • 6、某圆锥母线长为6 , 底面半径为2,则过该圆锥顶点的平面截此圆锥所得截面的面积最大时,此截面将底面圆周所分成的两段弧长之比(较短弧与较长弧之比)为(       )
    A、1:1 B、1:2 C、1:3 D、1:5
  • 7、如图,在四棱锥PABCD中,底面ABCD是边长为a的正方形,PA平面ABCD . 若PA=a , 则直线PB与平面PCD所成的角的大小为(       )

    A、π6 B、π4 C、π3 D、π2
  • 8、已知点A0,1B1,1 , 设过点P0,1的直线lAOB的边AB交于点M(其中点M异于AB两点),与边OB交于N(其中点N异于OB两点),若设直线l的斜率为k.
    (1)、试用k来表示点MN的坐标;
    (2)、求OMN的面积S关于直线l的斜率k的函数关系式;
    (3)、当k为何值时,S取得最大值?并求此最大值.
  • 9、如图,在直四棱柱ABCDA1B1C1D1中,AB=BC=2AA1=2CD=2A1C=3AB//CD

    (1)、求证:BC平面ABB1A1
    (2)、求平面AA1D与平面A1DC夹角的余弦值.
  • 10、在锐角ABC中,角A、B、C的对边分别为a、b,c,其面积为S,且(ba)(b+a)+accosB=233S
    (1)、求角A的大小;
    (2)、若a=23 , 求S的取值范围.
  • 11、为了解某年级学生对《居民家庭用电配置》的了解情况,校有关部门在该年级进行了一次问卷调查(共10道题),从该年级学生中随机抽取24人,统计了每人答对的题数,将统计结果分成[0,2),[2,4),[4,6),[6,8),[8,10]五组,得到如下频率分布直方图.

    (1)估计这组数据的平均数(同一组中的数据用该组区间的中点值作代表);

    (2)用分层随机抽样的方法从[4,6),[6,8),[8,10]的组别中共抽取12人,分别求出抽取的三个组别的人数;

    (3)若从答对题数在[2,6)内的人中随机抽取2人,求恰有1人答对题数在[2,4)内的概率.

  • 12、已知两直线l1:3x+y9=0l2:2xy1=0的交点为P
    (1)、若直线l过点P且与直线x+2y1=0平行,求直线l的一般式方程;
    (2)、若圆C过点(2,5)且与l1相切于点P , 求圆C的标准方程.
  • 13、在四棱柱ABCDA1B1C1D1中,AA1底面ABCD , 底面ABCD是正方形,AB=2AA1=4MAA1的中点,则异面直线AD1BM所成角的余弦值为
  • 14、已知向量a=(1,m,n),b=m2,n,32 , 若a//b , 则mn=
  • 15、数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念、公式符号、推理论证、思维方法等之中,揭示了规律性,是一种科学的真实美.在平面直角坐标系中,曲线C:x2+y2=2x+2y就是一条形状优美的曲线,对于此曲线,下列说法正确的有(     )
    A、曲线C围成的图形的周长是42π B、曲线C围成的图形有6条对称轴 C、Ta,b是曲线C上任意一点,4a+3b18的最小值是1152 D、曲线C上的任意两点间的距离不超过6
  • 16、下列给出的命题正确的是(       )
    A、若直线l的方向向量为e=1,0,3 , 平面α的法向量为n=2,0,23 , 则l//α B、两个不重合的平面α,β的法向量分别是u=2,2,1,v=3,4,2 , 则αβ C、a,b,c是空间的一组基底,则a+b,b+c,c+a也是空间的一组基底 D、已知三棱锥OABC , 点P为平面ABC上的一点,且OP=12OA+mOBnOCn,mR , 则mn=12
  • 17、已知点A,B,C,D,P,Q都在同一个球面上,ABCD为正方形,若直线PQ经过球心,且PQ平面ABCD.则异面直线PA,QB所成的角的最小值为(       )
    A、60° B、45° C、30° D、15°
  • 18、在三棱锥PABC中,PA=BC=4PB=AC=5PC=AB=11 , 则三棱锥PABC的外接球的表面积为(       )
    A、26π B、12π C、8π D、24π
  • 19、如图正方体ABCDA1B1C1D1的棱长为a,以下结论中,错误的是(       )

    A、异面直线A1DAB1所成的角为60° B、直线A1DBC1垂直 C、直线A1DBD1平行 D、直线A1DB1C平行
  • 20、在空间中,若向量a=(1,1,2)b=(1,2,3)c=(3,3,m)共面,则m=(       )
    A、4 B、2 C、3 D、6
上一页 608 609 610 611 612 下一页 跳转