-
1、已知四棱锥的底面是正方形,则下列关系能同时成立的是( )A、“”与“” B、“”与“” C、“”与“” D、“平面平面”与“平面平面”
-
2、已知椭圆的左、右焦点分别为 , , 下顶点为 , 直线交于另一点 , 的内切圆与相切于点 . 若 , 则的离心率为( )A、 B、 C、 D、
-
3、下列可以作为方程的图象的是( )A、
B、
C、
D、
-
4、已知事件A与事件B互相独立,且 , 则( )A、0.06 B、0.14 C、0.24 D、0.56
-
5、若 , 则( )A、 B、7 C、 D、
-
6、已知向量 , 向量 , 则向量在向量上的投影向量为( )A、 B、 C、 D、
-
7、已知集合 , 则与集合的关系为( )A、 B、 C、 D、
-
8、下列递推关系式或其通项公式可以使数列为周期数列的有( )A、 B、 C、 D、
-
9、若是空间的一个基底,那么对任意一个空间向量 , 存在唯一的有序实数组 , 使得 , 我们把有序实数组叫做基底下向量的斜坐标.设向量在基底下的斜坐标为 , 则向量在基底下的斜坐标为( )A、 B、 C、 D、
-
10、已知为函数的零点,则( )A、1 B、2 C、3 D、4
-
11、已知复数在复平面内对应的点为 , 则复数的虚部为( )A、 B、 C、2 D、
-
12、如图,在中,点为边上靠近点的三等分点, , .
(1)、若 , 求三角形的面积;(2)、当最小时,求的长. -
13、已知复数 , , 且 .(1)、若且 , 求的值;(2)、设= , 已知当时, , 试求的值.
-
14、在中,角、、所对的边分别为、、 , 若向量 , 向量 , 且 .
(1)求角的大小;
(2)若 , 且 , 求 .
-
15、已知向量 , 满足 , , 且 .(1)、若 , 求实数k的值;(2)、求与的夹角.
-
16、已知正方形的边长为2,点P满足 , 则; .
-
17、已知向量 , , 则下列命题正确的是( )A、若 , 则 B、若在上的投影向量为 , 则向量与的夹角为 C、若与共线,则为或 D、存在 , 使得
-
18、在中, , 点是的重心,则的最小值是A、 B、 C、 D、
-
19、在中, , 则( )A、 B、 C、 D、1
-
20、如图,是水平放置的的斜二测直观图,为等腰直角三角形,其中与重合, , 则的面积是( )
A、9 B、 C、18 D、