• 1、已知集合A={xN|2x5}B={2,4,6} , 则AB=(       )
    A、{0,1,2,3,4,5,6} B、{1,2,3,4,5,6} C、{2,4} D、{x|2x6}
  • 2、某社区通过公益讲座宣传交通法规.为了解讲座效果,随机抽取10位居民,分别在讲座前、后各回答一份交通法规知识问卷,满分为100分.他们得分的茎叶图如图所示(“叶”是个位数字),则下列选项叙述错误的是(     ).

    A、讲座后的答卷得分整体上高于讲座前的得分 B、讲座前的答卷得分分布较讲座后分散 C、讲座前答卷得分的中位数是70 D、讲座前答卷得分的极差大于讲座后得分的极差
  • 3、“平面α内有一条直线l , 则这条直线上的一点A必在这个平面内”用符号语言表述是(     )
    A、lαAlAα B、lαAlAα C、lαAlAα D、lαAlAα
  • 4、如图所示,某景区有MN,PQ两条公路(MN,PQ在同一平面内),在公路上有两个景点入口A,C,游客服务中心在点B处,已知BC=1km,ABC=120°,cosBAC=5714cosACQ=277.

    (1)、已知该景区工作人员所用的对讲机是同一型号,该型号对讲机的信号有效覆盖距离为3km.若不考虑其他环境因素干扰,则A处的工作人员与C处的工作人员能否用对讲机正常通话?
    (2)、已知一点处接收到对讲机的信号强度与到该对讲机的距离的平方成反比.欲在公路CQ段上建立一个志愿服务驿站D , 且要求在志愿服务驿站D接收景点入口A处对讲机的信号最强.若选址D使CD=2km , 请判断该选址是否符合要求?
  • 5、已知10a=2,10b=5 , 则a+b=.
  • 6、设无穷等差数列an的前n项积为Tn.若a1<0 , 则“Tn有最大值”是“公差d0”的(       )
    A、充分而不必要条件 B、必要而不充分条件 C、充分必要条件 D、既不充分也不必要条件
  • 7、已知向量a=(x,1),b=(1,y) , 则下列等式中,有且仅有一组实数x,y使其成立的是(       )
    A、ab=0 B、|a|+|b|=2 C、|a|=|b| D、|a+b|=2
  • 8、已知集合A=xx0x>1B=2,0,1,2 , 则AB=(       )
    A、2,2 B、2,1,2 C、2,0,2 D、2,0,1,2
  • 9、对于函数fx , 若存在x0R , 使fx0=x0成立,则称x0fx的不动点.已知函数fx=ax2+b+1x+b1 a0.

    (1)当a=1b=3时,求函数fx的不动点;

    (2)若对任意实数b , 函数fx恒有两个相异的不动点,求a的取值范围;

    (3)在(2)的条件下,若fx的两个不动点为x1x2 , 且fx1+x2=aa+1 , 求实数b的取值范围.

  • 10、通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中)经过实验分析得知:f(t)=t2+24t+100,(0<t10)240,(10<t20)7t+380,(20<t40)
    (1)、讲课开始后第5分钟与讲课开始后第25分钟比较,何时学生的注意力更集中?
    (2)、讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
    (3)、一道比较难的数学题,需要讲解25分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?
  • 11、已知函数fx=mx+nx2+1是定义在1,1上的奇函数,且f1=1
    (1)、求m,n的值;
    (2)、用定义法判定fx的单调性;
    (3)、求使fa1+fa21<0成立的实数a的取值范围.
  • 12、已知命题p:xR,mx2mx+1>0;命题q:xR,x2+4mx+1<0.
    (1)、若命题q为真命题,求实数m的取值范围;
    (2)、若命题p,q中至少有一个为真命题,求实数m的取值范围.
  • 13、已知当xa,a+1时,函数fx=x22x+1的最大值为4 , 则a的值为
  • 14、已知函数f(x)R上的偶函数,当x>0时,f(x)=x2+2x3 , 则x<0时,f(x)=
  • 15、已知实数abR+ , 且2a+b=1 , 则下列结论正确的是(       )
    A、ab的最小值为18 B、4a2+b2的最小值为12 C、1a+1b的最小值为3+22 D、b1a10,2
  • 16、德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其命名的函数fx=1,xQ0,xRQ , 称为狄利克雷函数,则关于fx , 下列说法正确的是(       )
    A、f2=1 B、fx的定义城为R C、xRffx=1 D、fx为偶函数
  • 17、下列命题中是全称量词命题并且是真命题的是(       )
    A、xR,x2+2x+10 B、xN , 2x+1为奇数 C、所有菱形的四条边都相等 D、π是无理数
  • 18、定义在R上的奇函数fx满足,当0<x2时,fx<0 , 当x>2时,fx>0. 不等式xfx>0的解集为(       )
    A、2,+ B、2,02,+ C、,22,+ D、2,00,2
  • 19、已知函数fx=2a1x+4a,x<1x2ax+5,x1满足对任意x1x2 , 当x1x2时都有fx1fx2x1x2 >0成立,则a的取值范围是(       )
    A、121 B、122 C、[2+) D、[12]
  • 20、某学生从家中出发去学校,走了一段时间后,由于怕迟到,余下的路程就跑步方式前往学校.在下图中纵轴表示该学生离自己家的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是(       )
    A、    B、    C、    D、   
上一页 910 911 912 913 914 下一页 跳转