• 1、下列关系中,表述正确的是(       )
    A、0 B、A C、πQ D、3R
  • 2、如图,在四棱锥PABCD中,平面PAB平面ABCDAB//CDADC=90PAPBPA=PB

       

    (1)、求证:平面PAD平面PBC
    (2)、若AB=AD=2CD=1 , 点E是线段BC上一点,且二面角EPAD的余弦值为63 , 求CECB的值.
  • 3、如图,在八面体PABCDQ中,四边形ABCD是边长为2的正方形,平面PAD//平面QBC , 二面角PABC与二面角QCDA的大小都是30°AP=CQ=3PDAB

    (1)、证明:平面PCD//平面QAB
    (2)、设GQBC的重心,是否在棱PA上存在点S , 使得SG与平面ABCD所成角的正弦值为3020 , 若存在,求S到平面ABCD的距离,若不存在,说明理由.
  • 4、已知函数fx满足fx=13fx+3+n , 且f1=2 , 当x3,6时,fx=3x215x+30 . 函数gx=log22+74x1
    (1)、求实数n的值;
    (2)、当x0,3时,求fx的解析式;
    (3)、设hx=2sinx+λcos2x , 是否存在实数λ , 使不等式fhx>ghxx0,π2时恒成立?若存在,求实数λ的取值范围;若不存在,请说明理由.
  • 5、某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数fx与时刻x(时)的关系为fx=ax2+xax2+1+2a+45x0,24 , 其中a是与气象有关的参数,且a0,12 , 若用每天的环境综合污染指数fx的最大值作为当天的综合污染指数,并记作Ga
    (1)、当a=0时,求环境综合污染指数fx的值域;
    (2)、求Ga的解析式;
    (3)、规定当Ga>2时为综合污染指数超标,求当a在什么范围内时,该市市中心的综合污染指数超标.
  • 6、已知ABC的三个内角A,B,C所对的边分别为a,b,c , 满足ccosB+3csinB=a+b
    (1)、求C
    (2)、若ABC为锐角三角形,且a+b=4 , 求ABC的周长的取值范围.
  • 7、人脸识别就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.已知二维空间两个点Ax1,y1Bx2,y2 , 则其曼哈顿距离为dA,B=x1x2+y1y2 , 余弦相似度为cosA,B=x1x12+y12×x2x22+y22+y1x12+y12×y2x22+y22 , 余弦距离为1cosA,B . 已知0<α<β<π2M13cosα,13sinαN8cosβ,8sinβP13cosα+β,13sinα+βQ5cos2β,5sin2β , 若cosM,P=35cosM,N=1213 , 则dM,Q=
  • 8、在ABC中,DBC的中点,AD=22cosACB=55ADC=45° , 则AB=
  • 9、已知向量a=1,3b=4,0 , 则向量a在向量b上的投影向量的坐标为
  • 10、已知函数fx的定义域为Rfx+2+fx=f2024f12x+1为奇函数,且f32=12 , 则(       )
    A、fx+4=fx B、f2024=1 C、函数fx是偶函数 D、n=12026nfn12=12(参考公式:i=1ngi=g1+g2+g3++gn
  • 11、已知圆台的上、下底面半径分别为1和3,母线长为22 , 则(       )
    A、圆台的母线与底面所成的角为45° B、圆台的侧面积为82π C、圆台的体积为143π D、若圆台的两个底面的圆周在同一个球的球面上,则该球的表面积为40π
  • 12、下列说法正确的是(       )
    A、a>bc>d , 则ad>bc B、a<b , 则a2<b2 C、a>0b>0a+b=1 , 则1a+1b的最小值为4 D、a>0b>0ab+a+b=8 , 则a+b的最小值为4
  • 13、某工业园区有ABC共3个厂区,其中AB=63kmBC=10kmABC=90° , 现计划在工业园区内选择P处建一仓库,若APB=120° , 则CP的最小值为(       )

    A、6km B、8km C、43km D、62km
  • 14、函数fx=sinωx+π3ω>0的图象在区间0,1上恰有一条对称轴和一个对称中心,则(       )
    A、ω2π3,7π6 B、ω=π时,fx在区间12,1上不单调 C、fx在区间0,1上无最大值 D、fx在区间0,1上的最小值为1
  • 15、“a<3”是“函数fx=log23ax1在区间1,+上单调递增”的(       )
    A、充分不必要条件 B、充要条件 C、必要不充分条件 D、既不充分也不必要条件
  • 16、集合A,B满足AB=1,3,5,7,9AB=1,7A=1,5,7 , 则集合B中的元素个数为(       )
    A、3 B、4 C、5 D、6
  • 17、若数列an1nk,nN*,kN*满足an0,1 , 则称数列ank01数列,由所有k01数列组成集合Mk.
    (1)、若an是12项01数列,当且仅当n=3ppN*,p4时,an=0 , 求数列(1)nan的所有项的和;
    (2)、从集合Mk中任意取出两个数列an,bn , 记X=i=1kaibi.

    ①求随机变量X的分布列,并证明:EX>k2

    ②若用某软件产生kk201数列,记事件A=“第一次产生数字1”,B=“第二次产生数字1”,且0<PA<1,0<PB<1.若P(BA)<P(BA¯) , 比较PABP(AB¯)的大小.

  • 18、一个袋子中有10个大小相同的球,其中红球7个,黑球3个.每次从袋中随机摸出1个球,摸出的球不再放回.设第1,2,3次都摸到红球的概率为P1;在第1,2次都摸到红球的条件下,第3次摸到红球的概率为P2.求P1+P2=.
  • 19、如图,一个底面半径为2dm,母线长为25dm的圆锥形封闭透明容器内部装有一种液体,当圆锥底面向下平放在水平桌面上时,液面的高度恰好为圆锥的高的12 , 则当圆锥的顶点在桌面上,且底面平行于水平桌面时,液面的高度为(     )

    A、73dm B、2dm C、3dm D、273dm
  • 20、已知a>0b>0 , 则下列说法正确的是(       )
    A、a+b=1 , 则log2a+log2b2 B、a+b=1 , 则a+b<1 C、ab=1 , 则2a12b>1 D、ab=1 , 则a2+b2>1
上一页 609 610 611 612 613 下一页 跳转