相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是( )A、 B、 C、 D、都不对
-
2、如图所示,一个水平放置的四边形OABC的斜二测画法的直观图是边长为2的正方形 , 则原四边形的面积是( )A、 B、 C、16 D、8
-
3、已知平面向量与垂直,则的值是( )A、 B、 C、12 D、
-
4、已知复数 , 则( )A、 B、 C、 D、
-
5、已知等比数列的各项均为正数且公比大于1,前项积为 , 且 , 则使得的的最小值为( )A、 B、 C、 D、
-
6、正方体的棱长为2,是棱的中点,是棱上一点(含端点),且 , 则三棱锥的体积为( )A、 B、 C、 D、1
-
7、直线的倾斜角为( )A、 B、 C、 D、
-
8、已知 , 的定义域为 , 若 , , 且为奇函数,为偶函数,则( )A、为偶函数 B、为奇函数 C、 D、关于对称
-
9、抛物线的焦点到其准线的距离为( )A、 B、1 C、2 D、4
-
10、为了协调城乡教育资源的平衡,政府决定派甲、乙、丙等六名教师去往包括希望中学在内的三所学校支教(每所学校至少安排一名教师).受某些因素影响,甲乙教师不被安排在同一所学校,丙教师不去往希望中学,则不同的分配方法有( )种.A、 B、 C、 D、
-
11、已知向量 , 若共线,则( )A、 B、 C、 D、
-
12、已知函数 .(1)、当时,以点为切点作曲线的切线,求切线方程;(2)、证明:函数有3个零点;(3)、若在区间上有最小值,求的取值范围.
-
13、某林场去年底森林木材储存量为100万 , 若树木以每年20%的增长率生长,计划从今年起,每年底要砍伐x万木材,记为第n年年底的木材储存量.(1)、写出;写出数列的递推公式;(2)、为了实现经过10年木材储存量翻两番(原来的4倍)的目标,每年砍伐的木材量x的最大值是多少?(精确到0.1万)
参考数据:.
-
14、已知正项数列的前n项和为 , 且.(1)、求数列的通项公式;(2)、若 , 求数列的前n项和.
-
15、如图,某广场内有一半径为米的圆形区域,圆心为 , 其内接矩形的内部区域为居民的健身活动场所,已知米,为扩大居民的健身活动场所,打算对该圆形区域内部进行改造,方案如下:过圆心作直径 , 使得 , 在劣弧上取一点 , 过点作圆的内接矩形 , 使 , 把这两个矩形所包括的内部区域均作为居民的健身活动场所,其余部分进行绿化,设 .
(1)记改造后的居民健身活动场所比原来增加的用地面积为(单位:平方米),求的表达式(不需要注明的范围) .
(2)当取最大值时,求的值为 .
-
16、已知数列的奇数项依次成等差数列,偶数项依次成等比数列,且 , , , , 则.
-
17、有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有种不同的招聘方案.(用数字作答)
-
18、关于函数 , 下列判断正确的是( ).A、是的极大值点 B、函数有且只有1个零点 C、存在正实数
, 使得成立 D、对任意两个正实数 , 且 , 若 , 则 .
-
19、已知定义在上的函数 , 其导函数的大致图象如图所示,则下列叙述不正确的是( )A、 B、函数在上递增,在上递减 C、函数的极值点为 , D、函数的极大值为
-
20、已知函数()在点处的切线为直线 , 若直线与两坐标轴围成的三角形的面积为 , 则实数( )A、 B、1 C、2 D、