相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、如图在棱长为6的正方体中,分别是中点,在侧面上(包括边界),且满足三棱锥的体积等于9,则的长度的取值范围.
-
2、如图,已知某平面图形的斜二测画法直观图是边长为2的正方形 , 则该平面图形的周长为.
-
3、已知为一个单位向量, , 若在上的投影为 , 则.
-
4、如图,为正圆锥底面圆的直径,点是圆上异于的动点, , 则下列结论正确的是( )A、圆锥的侧面积为 B、三棱锥体积的最大值为 C、的取值范围是 D、三棱锥体积最大时,其内切球半径为
-
5、在中,内角 , , 所对的边分别为 , , , 且 , 则下列选项正确的是( )A、若 , , 则有两解 B、若 , , 则无解 C、若为锐角三角形,且 , 则 D、若 , 则的最大值为
-
6、长方体中, , 分别为 , 的中点,为与的交点, , , 四面体的四个顶点在球的球面上,则球的表面积为( )A、 B、 C、 D、
-
7、如图所示,已知点G是的重心,过点G作直线分别与AB,AC两边交于M,N两点(点N与点C不重合),设 , 则的值为( )A、3 B、4 C、5 D、6
-
8、如图,正方体的棱长为2,E,F分别为 , 的中点,则平面截正方体所得的截面面积为( )A、 B、 C、9 D、18
-
9、四羊方尊(又称四羊尊)为中国商代晚期青铜器,其盛酒部分可近似视为一个正四棱台(上、下底面的边长分别为 , 高为),则四羊方尊的容积约为( )A、 B、 C、 D、
-
10、△ABC中, , 则△ABC一定是A、等腰三角形 B、直角三角形 C、等腰直角三角形 D、等边三角形
-
11、已知底面半径为的圆锥的体积为 , 则圆锥的高为( )A、 B、 C、 D、
-
12、在复数范围内,方程的解集为 .
-
13、在高为3的正三棱台中, , 且上底面的面积为 , 则( )A、直线与异面 B、直线与异面 C、正三棱台的体积为 D、正三棱台的体积为
-
14、如图,表示水平放置的根据斜二测画法得到的直观图,在轴上,与轴垂直,且 , 则中边上的高为( )A、2 B、4 C、 D、
-
15、已知 , 且在上的投影向量为( )A、 B、 C、 D、
-
16、若 , 则( )A、 B、2 C、 D、
-
17、已知函数.(1)、当时,记函数的导数为 , 求的值.(2)、当 , 时,证明:.(3)、当时,令 , 的图象在 , 处切线的斜率相同,记的最小值为 , 求的最小值.
(注:是自然对数的底数).
-
18、某中学在运动会期间,随机抽取了200名学生参加绳子打结计时的趣味性比赛,并对学生性别与绳子打结速度快慢的相关性进行分析,得到数据如下表:
性别
速度
合计
快
慢
男生
65
女生
55
合计
110
200
(1)、根据以上数据,能否有99%的把握认为学生性别与绳子打结速度快慢有关?(2)、现有n根绳子,共有2n个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.(i)当 , 记随机变量X为绳子围成的圈的个数,求X的分布列与数学期望;
(ii)求证:这n根绳子恰好能围成一个圈的概率为
附:
0.100
0.050
0.025
0.010
k
2.706
3.841
5.024
6.635
-
19、如图,在四棱锥中,四边形ABCD是边长为2的正方形,平面平面ABCD, , 点E是线段AD的中点,.(1)、证明://平面BDM;(2)、求平面AMB与平面BDM的夹角.
-
20、某中学的A、B两个班级有相同的语文、数学、英语教师,现对此2个班级某天上午的5节课进行排课,2节语文课,2节数学课,1节英语课,要求每个班级的2节语文课连在一起,2节数学课连在一起,则共有种不同的排课方式.(用数字作答)