相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、已知 , , 则的值为A、 B、 C、 D、
-
2、某中学有初中生600名,高中生200名,为保障学生的身心健康,学校举办“校园安全知识”了竞赛.现按比例分配的分层随机抽样的方法,分别抽取初中生名,高中生名,经统计:名学生的平均成绩为74分,其中名初中生的平均成绩为72分,名高中生的平均成绩为分,则( )A、74 B、76 C、78 D、80
-
3、已知函数 .(1)、当时,讨论函数的单调性;(2)、当时,若曲线上的动点到直线距离的最小值为(为自然对数的底数).
①求实数的值;
②求证: .
-
4、我们在学习解析儿何过程中知道椭圆、双曲线的定义分别是平面内到两定点距离之和、距离之差的绝对值等于某个定值,天文学家卡西尼在研究土星及其卫星运行规律时发现到两定点距离之积为常数的点的轨迹,我们称之为卡西尼卵形线.若定点 , 动点满足 , 其中均为正数,记该卡西尼卵形线为曲线 , 它的轨迹方程为.(1)、求参数的值(用含的式子表示);(2)、若为曲线上一点,求证: , ;(3)、若 , 求证:曲线恰经过个整点(横、纵坐标均为整数的点).
-
5、如图,正三棱柱的所有棱长都为为中点.(1)、求证:平面;(2)、求平面与面所成角的余弦值.
-
6、已知函数 , (),
(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当时,若函数在区间[k,2]上的最大值为28,求k的取值范围
-
7、设表示不超x的最大整数(如).对于给定的 , 定义 , 则;当时,函数的值域是 .
-
8、函数 , 若成等比数列且 , 则值域为.
-
9、已知向量在正方形网格中的位置如图所示,若网格纸上小正方形的边长为1,则;
-
10、曲线是平面内与三个定点和的距离的和等于的点的轨迹,为上一点,则( )A、曲线关于轴对称 B、存在点P,使得 C、面积的最大值是1 D、存在点 , 使得为钝角
-
11、已知等差数列与等比数列的前项和分别为 , 则下列结论中正确的是( )A、数列是等比数列 B、可能为 C、数列是等差数列 D、数列是等比数列
-
12、有一组样本数据 , , …, , 由这组数据得到新样本数据 , , …, , 其中(为非零常数,则( )A、两组样本数据的样本平均数相同 B、两组样本数据的样本中位数相同 C、两组样本数据的样本标准差相同 D、两组样本数据的样本极差相同
-
13、有四张卡片,每张卡片的一面上写着英文字母,则另外一面上写着数字.现在规定:当牌的一面写着数字7时,另外一面必须写着字母.你的任务是:为了检验下面4张卡牌是否有违反规定的写法,你需要翻看哪些牌?( )A、①② B、②③ C、②④ D、④③
-
14、设10≤x1<x2<x3<x4≤104 , x5=105 , 随机变量取值x1、x2、x3、x4、x5的概率均为0.2,随机变量取值、、、、的概率也均为0.2,若记、分别为、的方差,则( )A、> B、= C、< D、与的大小关系与x1、x2、x3、x4的取值有关
-
15、已知 , 且 , 则( )A、 B、 C、 D、
-
16、已知空间向量满足 , 则( )A、 B、1 C、0 D、
-
17、函数的最小正周期为( )A、 B、 C、 D、
-
18、把函数的图象按向量平移,得到的图象,则( )A、 B、 C、 D、
-
19、若集合 , 则( )A、 B、 C、 D、
-
20、牛顿法是17世纪牛顿在《流数法与无穷级数》一书中,给出了高次代数方程的一种数值解法.具体步骤如下:设是函数的一个零点,任取作为的初始近似值,过点作曲线的切线 , 设与轴交点的横坐标为 , 并称为的1次近似值;过点作曲线的切线 , 设与轴交点的横坐标为 , 称为的2次近似值;一直继续下去,得到.一般地,过点作曲线的切线 , 记与轴交点的横坐标为 , 并称为的次近似值,称数列为牛顿数列.(1)、若函数的零点为.求的2次近似值;(2)、设是函数的两个零点,数列为函数的牛顿数列,数列满足.
(i)求证:数列为等比数列;
(ii)证明:.