相关试卷
- 河北省张家口市2016-2017学年高一下学期数学期末考试试卷
- 河北省邢台市2016-2017学年高一下学期数学期末考试试卷
- 河北省唐山市2016-2017学年高一下学期数学期末考试试卷
- 河北省廊坊市省级示范高中联合体2016-2017学年高一下学期数学期末考试试卷
- 河北省衡水市深州中学2016-2017学年高一下学期数学期末考试试卷
- 河北省邯郸市2016-2017学年高一下学期数学期末考试试卷
- 河北省承德市2016-2017学年高一下学期数学期末考试试卷
- 河北省保定市2016-2017学年高一下学期数学期末考试试卷
- 江西省赣州市2016-2017学年高一下学期期末数学考试试卷
- 四川省雅安市2016-2017学年高二下学期数学期末考试试卷(文科)
-
1、2024年,“网红”城市哈尔滨吸引了大量游客前来旅游,著名景点有冰雪大世界和亚布力滑雪场.当地为了合理配置旅游资源,管理部门对首次来哈尔滨的游客进行了问卷调查,据统计,其中的人计划只参观冰雪大世界,另外的人计划既参观冰雪大世界又游玩亚布力滑雪场.每位游客若只参观冰雪大世界,则发1个纪念币;若既参观冰雪大世界又游玩亚布力滑雪场,则发2个纪念币.假设每位首次来哈尔滨的游客计划是否游玩冰雪大世界和亚布力滑雪场互不影响,视频率为概率.(1)、从游客中随机抽取4人,记这4人合计的纪念币的个数为 , 求的分布列和数学期望;(2)、从游客中随机抽取人(),记这人合计纪念币的个数恰为的概率为 , 求.
-
2、已知函数 , 其中是自然对数的底数.(1)、若 , 其中为偶函数,为奇函数,求函数的解析式以及最小值;(2)、若的图像与直线相切,求实数的值.
-
3、如图,将长方形(及其内部)绕旋转一周形成圆柱,其中 , , 劣弧的长为 , 为圆的直径,平面与平面的交线为.
(1)、证明:;(2)、若平面与平面夹角的正切值为 , 求四棱锥的体积. -
4、南宋数学家在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的二阶等差数列与一般等差数列不同,二阶等差数列中前后两项之差并不相等,但是逐项之差成等差数列.现有二阶等差数列 , 其前项分别为 , , , , , 设数列的前项和为 , 则.
-
5、已知函数是上的增函数,则实数a的可以是 . (写出一个满足题意的a即可)
-
6、已知角的终边过点 , 则.
-
7、已知为直线上动点,分别与圆 相切于两点,则弦的长度可能是( )A、 B、 C、 D、
-
8、某中学为更好地开展素质教育,现对外出研学课程是否和性别有关做了一项调查,其中被调查的男生和女生人数相同,且男生中选修外出研学课程的人数占男生总人数的 , 女生中选修外出研学课程的人数占女生总人数的 . 如果依据的独立性检验认为选修外出研学课程与性别有关,但依据的独立性检验认为选修外出研学课程与性别无关,则调查人数中男生可能有( )
附:
, 其中.
A、150人 B、225人 C、300人 D、375人 -
9、克罗狄斯托勒密(约90-168年)是希腊著名的数学家、天文学家和地理学家.托勒密定理是欧几里得几何中的重要定理,定理内容如下:任意一凸四边形,两组对边乘积的和不小于两对角线的乘积,当且仅当四点共圆时,等号成立.已知在凸四边形中, , , , , 则的最大值为( )A、 B、 C、 D、
-
10、设为直线,为平面,则的必要不充分条件是( )A、直线与平面内的无数条直线垂直 B、直线与平面内任意直线都垂直 C、直线与平面内两条不平行直线垂直 D、直线与平面都垂直于同一平面
-
11、函数的零点所在的区间是( )A、 B、 C、 D、
-
12、已知集合 , , 则( )A、 B、 C、 D、
-
13、定义:任取数列中相邻的两项,若这两项之差的绝对值为3,则称数列具有“性质3”.已知项数为n的数列的所有项的和为 , 且数列具有“性质3”.(1)、若 , 且 , , 写出所有可能的的值;(2)、若 , , 证明:“”是“”的充要条件;(3)、若 , , , 证明:或 , ().
-
14、甲乙两人参加知识竞赛活动,比赛规则如下:两人轮流随机抽题作答,答对积1分且对方不得分,答错不得分且对方积1分;然后换对方抽题作答,直到有领先2分者晋级,比赛结束.已知甲答对题目的概率为 , 乙答对题目的概率为p,答对与否相互独立,抽签决定首次答题方,已知两次答题后甲乙两人各积1分的概率为.记甲乙两人的答题总次数为.(1)、求p;(2)、当时,求甲得分X的分布列及数学期望;(3)、若答题的总次数为n时,甲晋级的概率为 , 证明:.
-
15、函数 .(1)、若 , 求函数的最大值;(2)、若在恒成立,求实数m的取值范围.
-
16、已知椭圆C: , 离心率 , 且点在椭圆上.(1)、求该椭圆的方程;(2)、直线l交椭圆C于P,Q两点,直线AP,AQ的斜率之和为0,且 , 求的面积.
-
17、如图,在直角中, , , 将绕边PO旋转到的位置,使 , 得到圆锥的一部分,点C为上的点,且.
(1)、求点O到平面PAB的距离;(2)、设直线OC与平面PAB所成的角为 , 求的值. -
18、为了回馈长期以来的顾客群体,某健身房在五周年庆活动期间设计出了一种游戏活动,顾客需投掷一枚骰子两次,若两次投掷的数字都是偶数,则该顾客获得该健身房的免费团操券5张,且有2次终极抽奖机会(2次抽奖结果互不影响);若两次投掷的数字之和是5或9,则该顾客获得该健身房的免费团操券5张,且有1次终极抽奖机会;其余情况顾客均获得该健身房的免费团操券3张,不具有终极抽奖机会.已知每次在终极抽奖活动中的奖品和对应的概率如下表所示.
奖品
一个健身背包
一盒蛋白粉
概率
则一位参加游戏活动的顾客获得蛋白粉的概率为.
-
19、在中,角A,B,C所对的边分别为a,b,c,且 , , , M为AB的中点,则线段CM的长为.
-
20、已知函数与函数在公共点处的切线相同,则实数m的值为.