• 1、已知向量a=3,0b=1,2 , 则ab上的投影向量的坐标是.
  • 2、如图,在正方体ABCDA1B1C1D1中,点P在线段B1C上运动,则下列结论正确的是(            )

       

    A、直线BD1平面A1C1D B、三棱锥PA1C1D的体积为定值 C、异面直线APA1D所成角的取值范围是π4,π2 D、当P为B1C的中点时,直线C1P与平面A1C1D所成角的正弦值为33
  • 3、已知fx是定义在R上的偶函数,且fx1是奇函数,当1<x<1时,fx=x2 , 则(       )
    A、fx的值域为1,1 B、fx的最小正周期为4 C、fx1,1上有3个零点 D、f5=f4
  • 4、下列选项中,值为14的是(       )
    A、sin15sin75 B、cos36cos72 C、sin56+sin4cos56+cos4 D、tan151+tan215
  • 5、在ABC中,点D在边BC上,且满足BD=14BC , 点E为线段AD上任意一点(除端点外),若实数xy满足BE=xBA+yBC , 则1x+1y的最小值为(     )
    A、22 B、42+6 C、22+5 D、9
  • 6、设函数y=fxx2是奇函数.若函数gx=fx+5,f4=9 , 则g4=(       )
    A、28 B、33 C、38 D、43
  • 7、若sin(π-α)=13 , 且π2<α<π , 则sin2α的值为(  )
    A、-429 B、-229 C、229 D、429
  • 8、已知平面向量ab , 则“a=ba=b”是“a=b”的(     )
    A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件
  • 9、已知α是第二象限的角,Px,3为其终边上的一点,且sinα=13 , 则x=(       )
    A、-6 B、±6 C、±62 D、62
  • 10、复数1ii的虚部为(     )
    A、1 B、1 C、i D、i
  • 11、已知命题p:xR,exx1>0 , 则¬p是(       ).
    A、xR,exx10 B、xR,exx1<0 C、x0R,ex0x01<0 D、x0R,ex0x010
  • 12、已知集合A=1,0,1,B=0,+ , 则 AB=(       )
    A、0,1 B、1 C、0,+ D、1,+
  • 13、如图,四棱锥PABCD中,PA底面ABCDPA=AC=2AB=3CAB=π6 , 平面PAD与平面PBC的交线为l,且AD//l

    (1)、证明ADPB
    (2)、若PE=13PC , 求平面ABE与平面PCB夹角的余弦值.
  • 14、如图,在直三棱柱ABCA1B1C1中,ABACAB=AC=AA1=3 , 点M是线段B1C1上一点,则下列说法正确的是(       )

       

    A、当M为B1C1的中点时,A1M平面MBC B、四面体A1BCM的体积为定值 C、A1M+BM的最小值为33+362 D、四面体A1BCM的外接球半径的取值范围是6,332
  • 15、已知函数fx=exasinxa>0 , 曲线y=fx0,f0处的切线也与曲线y=2xx2相切.
    (1)、求实数a的值;
    (2)、若x1fx的最大的极小值点,x2fx的最大的极大值点,求证:2<fx1+fx2<3+32.
  • 16、若函数y=x2+m2x+4对于一切R恒成立,则求实数m的取值范围.
  • 17、已知数列an的前n项和为Sn , 且a1=12an+1=n+12nan.

    (1)求an的通项公式 ;

    (2)设bn=n(2Sn),nN*,bnλ,nN* , 恒成立,求实数λ的取值范围.

  • 18、如图,在四棱锥SABCD中,底面ABCD满足ABADABBCSA底面ABCD , 且SA=AB=BC=1AD=0.5.

    (1)、证明AD平面SBC
    (2)、求平面SBC与平面SAD的夹角.
  • 19、在ABC中,角ABC所对的边分别为abc , 已知cosC+(cosA3sinA)cosB=0

    (1)求角B 的大小;

    (2)若b=3c=1 , 求ABC的面积.

  • 20、如图,在正三棱柱ABCA1B1C1中,已知AB=2D在棱BB1上,且BD=2 , 若AD与平面AA1C1C所成的角为α , 则α.

上一页 2 3 4 5 6 下一页 跳转