• 1、2024年奥运会在巴黎举行,中国代表团获得了40枚金牌、27枚银牌、24枚铜牌,共91枚奖牌.为了增加学生对奥运知识的了解,弘扬奥运精神,某校组织高二年级学生进行了奥运知识能力测试.根据测试成绩,将所得数据按照40,5050,6060,7070,8080,9090,100分成6组,其频率分布直方图如图所示.

    (1)、求该样本的第80百分位数;
    (2)、试估计本次奥运知识能力测试成绩的平均分(同一组中的数据以该组数据所在区间的中点值为代表);
    (3)、该校准备对本次奥运知识能力测试成绩在60,80内的学生,采用按比例分配的分层随机抽样方法抽出6名同学,再从抽取的这6名同学中随机抽取2名同学了解情况,求这2名同学中,有一人成绩在60,70内,另一人成绩在70,80内的概率.
  • 2、已知等差数列an满足a3+a5=221+2a2=a4 , 数列bn满足bn+12=bnbn+2b2=2b1b4=8.
    (1)、求数列anbn的通项公式;
    (2)、求数列1anan+1的前n项和Sn
    (3)、求数列anbn的前n项和Tn.
  • 3、已知向量a=x1,y1b=x2,y2 , 定义新运算:ab=x1x2+y1y2.若函数fx=ab , 则称fx为向量ab的点积函数.例如:向量a=2,xb=cosx,1 , 则向量ab的点积函数fx=2cosxx.
    (1)、若向量m=1,1n=ucosx,vsinxuvR),且向量mn的点积函数fx=2cosx+2sinx , 求n的值;
    (2)、若向量m=sin2x,4n=1,cosx1 , 求向量mn的点积函数gx的值域;
    (3)、若向量m=sin2xπ6,4n=2,cos2x+π3的点积函数为hx , 且存在xπ4,2π3 , 使得2hx+k3成立,求k的取值范围.
  • 4、已知函数fx=mx2mR , 且fx+20的解集为1,1

    (1)求m的值;

    (2)若a,b,cR , 且1a+12b+13c=m , 求证a+2b+3c9

  • 5、(1)已知x>0 , 求y=2xx2+1的最大值.

    (2)已知x>0y>0 , 且2x+3y=6 , 求xy的最大值.

  • 6、已知集合x1,x2,x3,x4,x5,x6=1,2,3,4,5,6 , 将xixj(其中i1,2,3j4,5,6)的乘积xixj放入如图的3×3方格中,则方格中全部数之和的最大值为.

    x1x4

    x1x5

    x1x6

    x2x4

    x2x5

    x2x6

    x3x4

    x3x5

    x3x6

  • 7、一个圆锥恰有三条母线两两夹角为60° , 若该圆锥的侧面积为33π , 则该圆锥的体积为.
  • 8、函数fx=log3ax2xa>1),若fx>11,+上恒成立,则a的取值范围是.
  • 9、双曲线E:x2a2y2=1(a>0)的一条渐近线的斜率为k , 若0<k<1 , 则a的值可能为(       )
    A、12 B、22 C、2 D、2
  • 10、已知a>0b>0 , 且a+b=1 , 则1a+4b的最小值为(       )
    A、9 B、8 C、7 D、6
  • 11、已知函数fx=x2aex+1有两个极值点,则实数a的取值范围是(       )
    A、a0 B、0<a<2e C、0<a2e D、a2e
  • 12、下列选项中正确的是(       )
    A、ac>bc , 则a>b B、a>bc>d , 则ac>bd C、a>b , 则1a<1b D、ac2>bc2 , 则a>b
  • 13、设函数fx=Asinωx+φA0ω0φπ2的部分图象如图所示,则f(0)=

    A、3 B、32 C、2 D、1
  • 14、在一个不透明的口袋中装有大小、形状完全相同的n个小球,将它们分别编号为1,2,3,,n . 每次从口袋中随机抽取一个小球,记录编号后放回,直至取遍所有小球后立刻停止摸球.记总的摸球次数为Xn , 其期望为EXn
    (1)、求PX2=4PX3=5
    (2)、求EX2
    (3)、证明:EXn>nlnn+1

    附:①若随机变量X的可能取值为1,2,3,,n, , 则EX=i=1+kPX=k=limn+i=1nkPX=k

    ②若随机变量X=i=1nξi , 则EX=i=1nEξi

  • 15、在棱长为1的正方体ABCDA1B1C1D1中,下列说法正确的有(     )
    A、A1C1//平面ACD1 B、B1D平面ACD1 C、D到平面ACD1的距离为33 D、AB与平面ACD1所成的角为30°
  • 16、九宫格的起源可以追溯到远古神话中的洛书,洛书上的图案正好对应着从1到9九个数字,并且纵向、横向、斜向三条线上的三个数字的和(这个和叫做幻和)都等于15,即现代数学中的三阶幻方.根据洛书记载:“以五居中,五方皆为阳数,四隅为阴数”,其意思为:九宫格中5位于居中位置,四个顶角为偶数,其余位置为奇数.如图所示,若随机填写一组幻和等于15的九宫格数据,记事件A=a+b9”,则PA的值为.

    a

    d

    f

    b

    5

    g

    c

    e

    h

  • 17、已知F1F2分别是双曲线x2a2y2b2=1a>0,b>0的左、右焦点,过F1的直线与圆x2+y2=a2相切且分别交双曲线的左、右两支于A、B两点,若|AB|=|BF2|,则双曲线的渐近线方程为
  • 18、记Sn为等比数列an的前n项和,若a3=14,S3=34 , 则公比q=
  • 19、如图,直线l:y=m(m>0)与函数f(x)=2sinωxπ3(ω>0)的图象依次交于A,B,C三点,若|BC|=2|AB||AC|=6 , 则(     )

    A、m=1 B、ω=π C、x=12是曲线y=f(x)的一条对称轴 D、曲线y=f(x)向右平移1个单位后关于原点对称
  • 20、设事件A,B为两个随机事件,PA0,PB0 , 且PA¯|B=PB|A , 则(       )
    A、PB|A¯=PB¯|A B、PB¯|A=PA|B C、PB|A¯=PA|B D、PA¯|B=PB¯|A¯
上一页 45 46 47 48 49 下一页 跳转