相关试卷
-
1、已知集合 , 则 .
-
2、已知椭圆离心率等于 , 长轴长为4.(1)、求椭圆的标准方程;(2)、若直线与轨迹交于两点,为坐标原点,直线的斜率之积等于 , 试探究的面积是否为定值,并说明理由.
-
3、已知函数 .(1)、讨论函数的单调性;(2)、求证:当时, .
-
4、牧草再生力强,一年可收割多次,富含各种微量元素和维生素,因此成为饲养家畜的首选.某牧草种植公司为提高牧草的产量和质量,决定在本年度(第一年)投入80万元用于牧草的养护管理,以后每年投入金额比上一年减少 , 本年度牧草销售收入估计为60万元,由于养护管理更加精细,预计今后的牧草销售收入每年会比上一年增加.(1)、设n年内总投入金额为万元,牧草销售总收入为万元,求的表达式;(2)、至少经过几年,牧草销售总收入才能超过总投入? ()
-
5、已知等差数列的前n项和为 , 且(1)、求数列的通项公式;(2)、若 , 求数列的前n项和.
-
6、已知圆的圆心为 , 且与直线相切.(1)、求圆的标准方程;(2)、设直线与圆M交于A,B两点,求.
-
7、已知函数及其导函数的定义域均为 , 为奇函数,且则不等式的解集为 .
-
8、已知抛物线的焦点为 , 点为抛物线上一点,则.
-
9、已知函数的图象在处切线的斜率为 , 则下列说法正确的是( )A、 B、在处取得极大值 C、当时, D、的图象关于点中心对称
-
10、已知抛物线:的焦点为 , 过点的直线与抛物线相交于 , 两点,下列结论正确的是( )A、若 , 则 B、若 , 则的最小值为4 C、以线段为直径的圆与直线相切 D、若 , 则直线的斜率为1
-
11、下列结论正确的是( )A、直线的方向向量 , 平面的法向量 , 则 B、两个不同的平面 , 的法向量分别是 , , 则 C、若直线的方向向量 , 平面的法向量 , 若 , 则实数 D、若 , , , 则点在平面内
-
12、已知椭圆的焦点为 , , 是椭圆上一点,且 , 若的内切圆的半径满足 , 则椭圆的离心率为( )A、 B、 C、 D、
-
13、已知 , , , 其中 , 则下列选项正确的是( )A、 B、 C、 D、
-
14、已知离心率为2的双曲线 , 过右焦点且垂直于轴的直线与双曲线交于、两点,设、到双曲线的同一条渐近线的距离分别为和 , 且 , 则双曲线的方程为( )A、 B、 C、 D、
-
15、已知正四棱柱中, , 则到平面的距离为( )A、4 B、2 C、 D、
-
16、空间内有三点 , , , 则点到的中点的距离为( )A、 B、 C、 D、
-
17、已知集合 , 则的非空真子集的个数为( )A、1 B、2 C、3 D、4
-
18、已知圆 , 直线与圆交于 , 两点,过 , 分别作直线的垂线,垂足分别为分别异于.(1)、求实数的取值范围;(2)、若 , 用含的式子表示四边形的面积;(3)、当时,若直线和直线交于点 , 证明点在某条定直线上运动,并求出该定直线的方程.
-
19、在中,顶点 , 点在直线上,点在轴上,则周长的最小值为.
-
20、设的三个角A,B,C的对边分别为a,b,c,且(1)、求B;(2)、若 , 求的面积.