• 1、某广场内设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样的四面体得到的(被称作阿基米德体),如图所示,若该石凳的棱长为22 , 下列结论正确的有(       )

    A、AG平面BCDG B、该石凳的体积为643 C、AFCD四点共面 D、B到平面ACD的距离为63
  • 2、将函数fx=2sinπ18x+π3图象上所有的点向左平移3个单位长度,得到函数gx的图象,则下列命题正确的是(       )
    A、fx的最小正周期为36 B、gx=2cosπ18x C、gx为偶函数 D、gx45,45上共有5个极值点
  • 3、已知点D4,m在抛物线Ω:x2=8y上,点A为圆C:x2+(y2)2=r2(0<r<4)上任意一点,且AD的最小值为3,则,圆C的半径r为(       )
    A、1 B、2 C、3 D、4
  • 4、已知fx是定义在R的奇函数,且fx+2=fx2 . 若f1=2 , 则k=110fk=(       )
    A、2 B、0 C、2 D、4
  • 5、已知角α的顶点与坐标原点O重合,始边与x轴的非负半轴重合,其终边与圆O交于点P72,2 . 若点P沿着圆O的圆周按逆时针方向移动5π2个单位长度到达点Q , 则cosQOx=(       )
    A、255 B、35 C、265 D、45
  • 6、设α,βγ是两个平面,a,l是两条直线,则下列命题不正确的是(       )
    A、aαaβ , 则α//β B、αβ , 直线 lβlα , 则l//α C、αγ,βγ,αβ=l , 则lγ D、过平面α内任意一点作交线l的垂线,则此垂线必垂直于平面β
  • 7、已知双曲线C:x2a2y2b2=1a>0,b>0 , 则“C的渐近线互相垂直”是“C的离心率等于2”的(       )
    A、充要条件 B、充分不必要条件 C、必要不充分条件 D、既不充分也不必要条件
  • 8、已知向量a=x,0,b=2,1 . 若a4bb=0 , 则x的值为(       )
    A、10 B、6 C、3 D、4
  • 9、已知集合A=xlgx>0B=xx24 , 则AB=(    )
    A、1,2 B、1,2 C、0,2 D、1,+
  • 10、已知数列bn的前n项和为Sn , 且b1=12Sn=nbn+1 , 当数列bn的项数大于2时,将数列bn中各项的所有不同排列填入一个n!n列的表格中(每个格中一个数字),使每一行均为这n个数的一个排列,将第i1in!,iN行的数字构成的数列记作ain , 将数列ain中的第j1jn,jN项记作aij . 若对i,j , 均有aijbj , 则称数列ain为数列bn的“异位数列”,记表格中“异位数列”的个数为M
    (1)、求数列bn的通项公式bn
    (2)、当数列bn的项数为4时,求M的值;
    (3)、若数列ain为数列bn的“异位数列”,试讨论j=1naijbj的最小值.
  • 11、已知双曲线E:x2a2y2b2=1a>0,b>0 , 且四点A3,2B2,6C2,6D3,2中恰有三点在E上.

       

    (1)、求双曲线E的标准方程;
    (2)、如图,P,Q,R分别为双曲线E上位于第一、二、四象限的点,过坐标原点O分别作直线PQ,PR的垂线,垂足分别为M,N,且OM=ON=2

    (ⅰ)证明:Q,O,R三点共线;

    (ⅱ)求PQR面积的最小值.

  • 12、如图,四边形ABCD中,对角线AC,BD相交于点O,AC=2BD=22AOB=3π4 , 且AODBOC的外接圆半径相等.

    (1)、若AB=2 , 求OA的长;
    (2)、若sin2DAO+sinOBC=1 , 求BCO
  • 13、已知函数fx=ax1ex2x
    (1)、若曲线y=fxx=1处的切线过点0,3 , 求实数a的值;
    (2)、当1e2<a<2e时,证明:fx>3
  • 14、如图,在四棱锥PABCD中,底面ABCD为矩形,PD底面ABCDAD=2PD=AB=4 , M,N为别为棱PB,CD的中点.

       

    (1)、证明:MN//平面PAD
    (2)、求平面PMN与平面AMN的夹角的余弦值.
  • 15、人工智能(Artificial Intelligence),英文缩写为AI . 是新一轮科技革命和产业变革的重要驱动力量,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的科学.某商场在有奖销售的抽奖环节时,采用AI技术生成奖券码:在每次抽奖时,顾客连续点击按键5次,每次点击随机生成数字0或1或2,点击结束后,生成的5个数字之和即为奖券码.并规定:如果奖券码为0,则获一等奖;如果奖券码为3的正整数倍,则获二等奖,其它情况不获奖.已知顾客甲参加了一次抽奖,则他获二等奖的概率为
  • 16、已知α,β0,π2 , 且满足sinαtanβ=2cos2α2 , 则tanα+β=12 , 则sin2β=
  • 17、已知函数fx=exa,x>0,bex2,x<0 , 为奇函数,则a+b=
  • 18、如图,四棱锥PABCD中,侧面PAD为等腰直角三角形,底面ABCD为矩形,ABPDPA=PD=2 , 若该四棱锥存在内切球,且其内切球球心为O1 , 其外接球球心为O2 , 则下列结论正确的是(     )

    A、平面PAD平面ABCD B、四棱锥PABCD的内切球半径为21 C、四棱锥PABCD的体积为223 D、O1O22=422
  • 19、已知椭圆C:x2a2+y2b2=1a>b>0的左、右焦点分别为F1F2 , 上顶点为A,且AF1=F1F2=2 , P为C上位于第一象限内的点,且PF1PF2=185F1PF2的内角平分线交x轴于点M,则下列结论正确的是(     )
    A、椭圆C的离心率e=12 B、cosF1PF2=35 C、PF1F2的内切圆半径为55 D、F1MPF1=23
  • 20、在足球训练课上,A,B两位同学进行“点球”比赛,规则为:比赛共进行5轮,在每轮比赛中,两人各罚点球一次,射中得1分,射不中得0分.已知A,B每次点球命中的概率分别为PAPBPA,PB0,1 , 若5轮比赛后A,B的总得分分别为XAXB , 则下列结论正确的是(     )
    A、EXA<EXB , 则PA<PB B、PXA=XB=3PXA:XB=2:3 C、0<PA<PB<12 , 则DXA<DXB D、若当且仅当k=2时,PXA=kk=0,1,2,5取得最大值,则13<PA<12
上一页 53 54 55 56 57 下一页 跳转