• 1、记Sn为数列an的前n项和,a2=14,Sn+12n=ancosnπ
    (1)、求a3an的通项公式;
    (2)、设数列1an的前n项和为Tn , 证明:1818×14n<k=1n1T2k<16
  • 2、“村BA”后,贵州“村超”又火出圈!所谓“村超”,其实是目前火爆全网的贵州乡村体育赛事——榕江(三宝侗寨)和美乡村足球超级联赛,被大家简称为“村超”.“村超”的民族风、乡土味、欢乐感,让每个人尽情享受着足球带来的快乐.某校为了丰富学生课余生活,组建了足球社团.足球社团为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各 50名进行调查,部分数据如表所示:
     

    喜欢足球

    不喜欢足球

    合计

    男生

     

    20

     

    女生

    15

      

    合计

      

    100

    (1)、根据所给数据完成上表,依据α=0.005的独立性检验,能否有99.5%的把握认为该中学学生喜欢足球与性别有关?
    (2)、社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范定点射门.据统计,这两名男生进球的概率均为23 , 这名女生进球的概率为12 , 每人射门一次,假设各人进球相互独立,求3 人进球总次数X的分布列和数学期望.

    附:χ2=nadbc2a+bc+da+cb+d.

    α

    0.1

    0.05

    0.01

    0.005

    0.001

    x

    2.706

    3.841

    6.635

    7.879

    10.828

  • 3、已知抛物线C1y2=2pxp>0与双曲线C2y=1x相交于点Rx0,y0
    (1)、若y0=2 , 求抛物线C1的准线方程;
    (2)、记直线l:y=kx+bC1C2分别切于点M、N,当p变化时,求证:RMN的面积为定值,并求出该定值.
  • 4、某工厂生产一种产品测得数据如下:

    尺寸xmm

    38

    48

    58

    68

    78

    88

    质量yg

    16.8

    18.8

    20.7

    22.4

    24

    25.5

    质量与尺寸的比yx

    0.442

    0.392

    0.357

    0.329

    0.308

    0.290

    (1)、若按照检测标准,合格产品的质量yg与尺寸xmm之间近似满足关系式y=cxd(c、d为大于0的常数),求y关于x的回归方程;
    (2)、已知产品的收益z(单位:千元)与产品尺寸和质量的关系为z=2y0.32x , 根据(1)中回归方程分析,当产品的尺寸x约为何值时(结果用整数表示),收益z的预报值最大?

    附:(1)参考数据:i=16lnxilnyi=75.3i=16lnxi=24.6i=16lnyi=18.3i=16lnxi2=101.4.

    (2)参考公式:对于样本vi,ui(i=1,2,,n) , 其回归直线u=b^v+a^的斜率和截距的最小二乘估计公式分别为:b^=i=1nviv¯uiu¯i=1nviv¯2=i=1nviuinv¯u¯i=1nv12nv¯2a^=u¯b^v¯e2.7182.

  • 5、已知O为坐标原点,在抛物线y2=2pxp>0上存在两点E,F,使得OEF是边长为4的正三角形,则p=
  • 6、若(12x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5 , 则下列结论中正确的是(       )
    A、a0=1 B、a1+a2+a3+a4+a5=2 C、a1+a3+a5=122 D、a12+a24+a38+a416+a532=1
  • 7、(多选)已知f(2x+1)=x2 , 则下列结论正确的是(       )
    A、f(3)=4 B、f(x)=x22x+14 C、f(x)=x2 D、f(3)=9
  • 8、某市一个经济开发区的公路路线图如图所示,七个公司A1,A2,A3,A4,A5,A6,A7分布在大公路两侧,有一些小公路与大公路相连.现要在大公路上设一快递中转站,中转站到各公司(沿公路走)的距离总和越小越好,则这个中转站最好设在(       )

    A、路口C B、路口D C、路口E D、路口F
  • 9、设O为坐标原点,抛物线C1:y2=2pxp>0与双曲线C2:x2a2y2b2=1a>0,b>0有共同的焦点F,过F与x轴垂直的直线交C1于A,B两点,与C2在第一象限内的交点为M,若OM=mOA+nOBm,nRmn=18 , 则双曲线C2的离心率为(       )
    A、5+13 B、5+12 C、6+22 D、6+223
  • 10、已知mR , 且m+3i1+i=1+2i , 其中i是虚数单位,则m2i等于(       )
    A、5 B、5 C、2 D、1
  • 11、已知抛物线C:y2=2px(p>0)上一点P2,y0到其焦点的距离为5,则p=(       )
    A、3 B、4 C、5 D、6
  • 12、若向量a,b满足a=1,b=2,2,ab的夹角为3π4 , 则ab=(       )
    A、2 B、2 C、2 D、2
  • 13、设命题pnNn2>2n+1 , 则¬p是(       )
    A、nN,n22n+1 B、nN,n2=2n+1 C、nN,n22n+1 D、nN,n22n+1
  • 14、A={1,2,3,4,5,6,7,8},M={(xi,yi)|xiA,yiA} , 从M中选出n构成一列: (x1,y1),,(xn,yn).相邻两项(xi,yi),(xi+1,yi+1)满足:|xi+1xi|=3|yi+1yi|=4|xi+1xi|=4|yi+1yi|=3 , 称为K列.
    (1)、若K列的第一项为(3,3),求第二项;
    (2)、若τ为K列,且满足i为奇数时,xi{1,2,7,8};i为偶数时,xi{3,4,5,6};判断:(3,2)与(4,4)能否同时在τ中,并说明理由;
    (3)、证明:M中所有元素都不构成K列.
  • 15、函数f(x)定义域为(1,+) , 且f(0)=0,f'(x)=ln(x+1)x+1 , f(x)在A(a,f(a))(a≠0)

    处的切线为l1.

    (1)、求f'(x)的最大值;
    (2)、证明:当 1<a<0 , 除切点 A 外,y=f(x) 均在 l1 上方;
    (3)、 当 a>0 时,直线 l2 过点 A 且与 l1 垂直,l1l2 与 x 轴的交点横坐标分别为 x1x2 , 求 2ax2x1x2x1 的取值范围.
  • 16、已知椭圆E: x2a2+y2b2=1的离心率为22 , 椭圆上的点到两个焦点的距离之和为4.
    (1)、求椭圆方程;
    (2)、设O为原点,M(x0,y0)(x00)为椭圆上一点,直线x0x+2y0y4=0 与 y=2和y=-2分别相交于A、B两点,设△OMA和△OMB的面积分别为S1和S2 , 比较S1S2|OA||OB|的大小.
  • 17、某次考试中,只有一道单项选择题考查了某个知识点,甲、乙两校的高一年级学生都参加了这次考试.为了解学生对该知识点的掌握情况,随机抽查了甲、乙两校高一年级各100名学生该题的答题数据,其中甲校学生选择正确的人数为80,乙校学生选择正确的人数为75.假设学生之间答题相互独立,用频率估计概率.
    (1)、估计甲校高一年级学生该题选择正确的概率ρ;
    (2)、从甲、乙两校高一年级学生中各随机抽取1名,设X为这2名学生中该题选择正确的人数,估计X=1的概率及X的数学期望;
    (3)、假设:如果没有掌握该知识点,学生就从题目给出的四个选项中随机选择一个作为答案;如果掌握该知识点,甲校学生选择正确的概率为100%,乙校学生选择正确的概率为85%.设甲、乙两校高一年级学生掌握该知识点的概率估计值分别为p1,p2,判断p1与p2的大小(结论不要求证明).
  • 18、四棱锥P—ABCD中,△ACD与△ABC为等腰直角三角形,∠ADC=90°,∠BAC=90° ,E为BC的中点.

    (1)、F为PD的中点,G为PE的中点,证明:FG∥面PAB;
    (2)、若PA⊥平面ABCD,PA=AC,求AB与面PCD所成角的正弦值.
  • 19、在△ABC中,cosA=13asinC=42 
    (1)、求c;
    (2)、在以下三个条件中选择一个作为已知,使得△ABC存在,求BC的高.

    a=6 , ②bsinC=1023 , ③ΔABC面积为 102

  • 20、关于定义域为R的函数f(x),以下说法正确的有.

    ①存在在R上单调递增的函数f(x)使得f(x)+f(2x)=-x恒成立;

    ②存在在R上单调递减的函数f(x)使得f(x)+f(2x)=-x恒成立;

    ③使得f(x)+f(-x)=cosx恒成立的函数f(x)存在且有无穷多个;

    ④使得f(x)-f(-x)=cosx恒成立的函数f(x)存在且有无穷多个.

上一页 1 2 3 4 5 下一页 跳转