相关试卷
-
1、是定义在R上的偶函数,对 , 都有 , 且当时,.若在区间内关于x的方程至少有2个不同的实数根,至多有3个不同的实数根,则的取值范围是( )A、 B、 C、 D、
-
2、已知平行四边形中, , , . 若点满足 , 点为中点,则( )A、 B、 C、 D、
-
3、已知圆锥的底面圆周在球O的表面上,顶点为球心O,圆锥的高为3,且圆锥的侧面展开图是一个半圆,则球O的体积为( )A、 B、 C、 D、
-
4、年月日,阿贝尔奖和菲尔兹奖双料得主,英国岁高龄的著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前著名的数学家欧拉也曾研究过这个何题,并得到小于数字的素数个数大约可以表示为的结论.若根据欧拉得出的结论,估计以内的素数个数为( )(素数即质数, , 计算结果取整数)A、 B、 C、 D、
-
5、在△ABC中,AB=2,BC=1.5,∠ABC=120°(如图所示),若将△ABC绕直线BC旋转一周,则形成的旋转体的体积是( )A、 B、 C、 D、
-
6、i是虚数单位,若复数 , 则z的共轭复数( ).A、 B、 C、 D、
-
7、用篱笆在一块靠墙的空地围一个面积为的等腰梯形菜园,如图所示,用墙的一部分做下底 , 用篱笆做两腰及上底,且腰与墙成 , 当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.
-
8、对于无穷数列 , 下列命题中正确的是( )A、若既是等差数列,又是等比数列,则是常数列 B、若等差数列满足 , 则是常数列 C、若等比数列满足 , 则是常数列 D、若各项为正数的等比数列满足 , 则是常数列
-
9、若a,b,l是空间中三条不同的直线, , , 是三个不同的平面,则下列命题中真命题是( )A、若 , , , 则 B、若 , , , 则 C、若 , , , 则 D、若 , , , 则
-
10、在空间直角坐标系中,已知点 , , , 设 , .(1)、若与互相垂直,求的值;(2)、求点到直线的距离.
-
11、已知 , , , 若 , 则( )A、-2 B、2 C、-4 D、4
-
12、折扇图1在我国已有三千多年的历史,.它常以字画的形式体现我国的传统文化图2为其结构简化图,设扇面A,间的圆弧长为 , , 间的圆弧长为 , 当弦长为 , 圆弧所对的圆心角为 , 则扇面字画部分的面积为( )A、 B、 C、 D、
-
13、定义:如果函数在定义域内,存在极大值和极小值 , 且存在一个常数 , 使成立,则称函数为极值可差比函数,常数称为该函数的极值差比系数.已知函数(1)、当时,求;(2)、是否存在使的极值差比系数为?若存在,求出的值;若不存在,请说明理由;(3)、若 , 求的极值差比系数的取值范围.
-
14、已知椭圆 , 定义椭圆上的点的“伴随点”为.(1)、求椭圆上的点的“伴随点”的轨迹方程;(2)、如果椭圆上的点的“伴随点”为 , 对于椭圆上的任意点及它的“伴随点” , 求的取值范围;(3)、当时,直线交椭圆于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点 , 求的面积.
-
15、已知不等式在区间上恒成立,则实数的取值范围是
-
16、2024年第二届贵州“村超”总决赛阶段的比赛正式拉开帷幕.某校足球社的6名学生准备分成三组前往村超球队所在的平地村、口寨村、忠诚村3个村寨进行调研,每个村各有一组来调研,每个组至多3名学生,则不同的安排方法种数为.
-
17、一个不透明的口袋中有8个大小相同的球,其中红球4个,白球1个,黑球3个,则下列选项正确的有( )A、从该口袋中任取3个球,设取出的红球个数为 , 则数学期望 B、每次从该口袋中任取一个球,记录下颜色后放回口袋,先后取了3次,设取出的黑球次数为 , 则 C、从该口袋中任取3个球,设取出的球的颜色有种,则数学期望 D、每次从该口袋中任取一个球,不放回,拿出红球即停,设拿出的黑球的个数为 , 则数学期望
-
18、已知函数 , 的定义域为 , 是的导数,且 , , 若为偶函数,则( )A、80 B、75 C、70 D、65
-
19、已知 , 则曲线在点处的切线方程为( )A、 B、 C、 D、
-
20、在边长为的正三角形中,的值为A、 B、 C、 D、