• 1、已知向量ab均为单位向量,且ab , 则2aba+4b=(     )
    A、2 B、2 C、4 D、4
  • 2、椭圆x2m+y24=1的焦距为2,则m的值等于(     ).
    A、5 B、8 C、5或3 D、5或8
  • 3、等比数列an的各项均为正数,且a3a8=3 , 则log3a1+log3a2++log3a10=(     )
    A、5 B、10 C、4 D、2+log35
  • 4、函数f(x)=xcosx的导函数f'(x)在区间π,π上的图象大致为 (  )
    A、 B、 C、 D、
  • 5、已知复数z满足:2+iz¯=3+4i , 则z=(     )
    A、2925 B、295 C、5 D、5
  • 6、已知函数fx=log2x+1+x2 , 则不等式fx<0的解集为(       )
    A、,1 B、1,1 C、0,1 D、1,+
  • 7、已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1,F2 , 离心率为22 , 点PC上一点,PF1F2周长为22+2 , 其中O为坐标原点.
    (1)、求C的方程;
    (2)、直线l:y=x+mC交于A,B两点,

    (i)求OAB面积的最大值;

    (ii)设OQ=OA+OB , 试证明点Q在定直线上,并求出定直线方程.

  • 8、已知数列an满足a1=2a2=1a3=3 , 且an+2=λan+an+1 , 则a5=.
  • 9、对于随机事件A,B,若P(A)=25P(B)=35PBA=14 , 则(       )
    A、P(AB)=320 B、PAB=16 C、P(A+B)=910 D、P(A¯B)=12
  • 10、在(x+1)(x+2)(x+m)(x+n)的展开式中,含x3的项的系数是7,则m+n=(       )
    A、1 B、2 C、3 D、4
  • 11、定义:已知数列{an}(nN*)的首项a1=1 , 前n项和为Sn.设λk是常数,若对一切正整数n , 均有Sn+11kSn1k=λan+11k成立,则称此数列为“λ&k”数列.若数列{an}(nN*)是“33&2”数列,则数列{an}的通项公式an=(       )
    A、3×4n2 B、1(n=1)3×4n2(n2) C、4×3n2 D、1(n=1)4×3n2(n2)
  • 12、已知F是抛物线Ey2=2pxp>0的焦点,M是抛物线的准线与x轴的交点,且过点M的直线lE相切于点PPF=2.
    (1)、求抛物线E的方程.
    (2)、设过点F的直线交EAB两点,直线MAE的另一个交点为C , 点AMC之间.

    (i)证明:x轴平分AMB.

    (ii)记FBC的面积为S1MFC的面积为S2 , 求5S2S1的取值范围.

  • 13、对于给定的正整数n,记集合Rn=αα=x1,x2,x3,,xn,xjR,j=1,2,3,,n , 其中元素α称为一个n维向量.特别地,0=0,0,,0称为零向量.设kRα=a1,a2,,anβ=b1,b2,,bnRn , 定义加法和数乘:α+β=a1+b1,a2+b2,,an+bnkα=ka1,ka2,,kan . 对一组向量α1α2 , …,αssN+s2),若存在一组不全为零的实数k1k2 , …,ks , 使得k1α1+k2α2++ksαs=0 , 则称这组向量线性相关.否则,称为线性无关.
    (1)、对n=3 , 判断下列各组向量是线性相关还是线性无关,并说明理由.

    α=1,1,1β=2,2,2;②α=1,1,1β=2,2,2γ=5,1,4;③α=1,1,0β=1,0,1γ=0,1,1δ=1,1,1

    (2)、已知向量αβγ线性无关,判断向量α+ββ+γα+γ是线性相关还是线性无关,并说明理由.
    (3)、已知mm2个向量α1α2 , …,αm线性相关,但其中任意m1个都线性无关,证明下列结论:

    ①如果存在等式k1α1+k2α2++kmαm=0kiRi=1,2,3,,m),则这些系数k1k2 , …,km或者全为零,或者全不为零;

    ②如果两个等式k1α1+k2α2++kmαm=0l1α1+l2α2++lmαm=0kiRl1Ri=1,2,3,,m)同时成立,其中l10 , 则k1l1=k2l2==kmlm

  • 14、设抛物线C:y2=2pxp>0的焦点为F,点Pa,4在抛物线C上,POF(其中O为坐标原点)的面积为4.
    (1)、求a;
    (2)、若直线l与抛物线C交于异于点P的A,B两点,且直线PA,PB的斜率之和为43 , 证明:直线l过定点,并求出此定点坐标.
  • 15、如图,在圆锥SO中,AB是圆O的直径,且SAB是边长为4的等边三角形,C,D为圆弧AB的两个三等分点,ESB的中点.

    (1)、证明:DE//平面SAC
    (2)、求平面SAC与平面SBD所成锐二面角的余弦值.
  • 16、某服装公司对1-5月份的服装销量进行了统计,结果如下:

    月份编号x

    1

    2

    3

    4

    5

    销量y(万件)

    50

    96

    142

    185

    227

    yx线性相关,其线性回归方程为y^=b^x+7.1 , 则下列说法正确的是(       )

    A、线性回归方程必过3,140 B、b^=44.3 C、相关系数r<0 D、6月份的服装销量一定为272.9万件
  • 17、在△ABC中,角A,B,C的对边分别为a,b,c,若a=3,b=5,c=2acosA,则cosA=(  )
    A、13 B、24 C、33 D、63
  • 18、已知正数x,y满足x+3xy+2y=6 , 则xy的最大值为
  • 19、若定义在R上的函数fx满足fx+2+fx=0,f2x+1是奇函数,f12=1 , 设函数gx=xfx12 , 则g1+g2+g3+g4+g5=(       )
    A、5 B、4 C、3 D、2
  • 20、若存在实数对a,b , 使等式fxfax=b对定义域中每一个实数x都成立,则称函数fxHa,b型函数.
    (1)、若函数fx=exHa,e型函数,求a的值;
    (2)、若函数gx=e1xHa,b型函数,求ab的值;
    (3)、已知函数hx定义在7,9上,hx恒大于0,且为H2,4型函数,当x1,9时,hx=log3x2+mlog3x+2.若hx17,9上恒成立,求实数m的取值范围.
上一页 657 658 659 660 661 下一页 跳转