相关试卷
- 高中数学人教新课标A版必修3 第一章 算法初步 1.3算法案例
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.3循环语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.2.1输入语句、输出语句和赋值语句
- 高中数学人教新课标A版必修3 第一章 算法初步 1.1算法与程序框图(包括1.1.1算法的概念,1.1.2程序框图与算法的基本逻辑结构)
- 高中数学人教新课标A版必修3 第三章 概率 3.3几何概型
- 高中数学人教新课标A版必修3 第三章 概率 3.2古典概型
- 高中数学人教新课标A版 必修3 第三章 概率 3.1.3概率的基本性质
- 高中数学人教新课标A版必修3 第三章 概率 3.1.1随机事件的概率,3.1.2概率的意义
- 高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)
- 高中数学人教新课标A版必修3 第二章 统计 2.2.2用样本的数字特征估计总体的数字特征
-
1、现有4个相同的袋子,里面均装有4个除颜色外其他无区别的小球,第个袋中有个红球,个白球.现将这4个袋子混合后,任选其中一个袋子,并且连续取出三个球(每个取后不放回),则第三次取出的球为白球的概率为 .
-
2、已知 , 则 .
-
3、有一组样本数据 , 添加一个数形成一组新的数据,且 , 则新的样本数据( )A、众数为2的概率是 B、极差不变的概率是 C、第25百分位数不变的概率是 D、平均值变大的概率是
-
4、已知函数的表达式为 , 若函数恰有4个不同的零点,则实数的取值范围是( )A、 B、 C、 D、
-
5、已知圆台的上、下底面面积分别为 , 其外接球球心满足 , 则圆台的外接球体积与圆台的体积之比为( )A、 B、 C、 D、
-
6、已知 , , 且 , 则( )A、 B、 C、 D、
-
7、在二项式的展开式中,二项式的系数和为256,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A、 B、 C、 D、
-
8、已知集合 , , 则下列说法正确的是( )A、 B、
C、
D、
-
9、对于一组向量 , , , ……, , (且),令 , 如果存在(),使得 , 那么称是该向量组的“长向量”.(1)、设 , 且 , 若是向量组 , , 的“长向量”,求实数x的取值范围;(2)、若 , 且 , 向量组 , , , ……,是否存在“长向量”?给出你的结论并说明理由;(3)、若对于一组向量 , , , ……,(且),记已知T中的每一个向量都为该向量组的“长向量”,求证:.
-
10、在△ABC中,角A,B,C的对边分别为a,b,c,向量 , , 且.(1)、若边 , , 的平分线交BC边于点D.求AD的长;(2)、若E为BC边上任意一点, , .
(ⅰ)用 , 表示;
(ⅱ)求的最小值.
-
11、如图,正四棱锥中, , , E为SC中点.(1)、求证:平面BDE;(2)、求该正四棱锥的外接球的表面积;(3)、求三棱锥的表面积和体积.
-
12、如图,在棱长为4的正方体中,E为的中点,过A, , E三点的平面与此正方体的面相交,交线围成一个多边形.(1)、在图中画出这个多边形(不必说出画法和理由);(2)、平面将正方体分成两部分,求这两部分的体积之比(其中);(3)、若点P是侧面内的动点,且 , 当最小时,求长度的最小值.
-
13、在中,已知 , , , 解这个三角形.
-
14、在圆内接四边形中,已知 , , 平分.则的值为.
-
15、如图,为了测量河对岸的塔高AB,可以选取与塔底B在同一水平面内的两个测量基点C与D.现测得 , , , 在点C处测得塔顶A的仰角为 , 则塔高 .
-
16、若3+2i是关于x的方程2x2+px+q=0的一个根,则q的值是.
-
17、如图,在直三棱柱中, , , , 点D是的中点,点P为线段上的一个动点,下列说法正确的是( )A、平面与底面ABC的交线平行于 B、三棱锥的体积为定值 C、直线与直线CD可能相交 D、的最小值为
-
18、欧拉公式:是虚数单位, , 是由瑞士著名数学家欧拉发现的,它非常巧妙地将三角函数与复指数函数关联了起来,令可得.它又将自然界中的两个重要的无理数和、实数单位、虚数单位以及复数中的巧妙地结合在一起被数学家们誉为“上帝公式”、“宇宙第一公式”、“最美公式”等等下列关于欧拉公式的叙述正确的有( )A、 B、复数对应的点位于第二象限 C、 D、
-
19、在锐角中,A,B,C的对边分别是a,b,c,若 , 则的取值范围是( )A、 B、 C、 D、
-
20、如图,两个底面半径相同的圆锥组合的一个几何体,若底面圆的半径为1,两个圆锥的母线长分别为 , 则该几何体内切球的半径为( )A、1 B、 C、 D、