• 1、若一组数据14,17,11,9,12,15,m , 8,10,7的第65百分位数为12,则m的值可能为(       )
    A、8 B、10 C、13 D、14
  • 2、如图,在长方体ABCDA1B1C1D1中,AA1=2AB=AD=1MC1D上一点,且CMB1D , 则四棱锥MABCD的体积为(       )

    A、215 B、25 C、815 D、85
  • 3、设bn是公差为3的等差数列,且bn=an+1+an , 若a1=1 , 则a21=(       )
    A、21 B、25 C、27 D、31
  • 4、曲线fx=ex3x在点0,f0处的切线与两坐标轴所围成的三角形的面积为(       )
    A、18 B、16 C、14 D、13
  • 5、某地下雪导致路面积雪,现安排9名男志愿者,5名女志愿者参与扫雪和铲雪工作,其中3名女志愿者,2名男志愿者参与扫雪工作,其余志愿者参与铲雪工作,则不同的安排方法共有(       )
    A、240种 B、360种 C、720种 D、2002种
  • 6、将函数fx=sin2xπ3的图象向左平移π3个单位长度,得到函数gx的图象,则gx=(       )
    A、sin2x B、sin2x C、sin2x+π3 D、cos2x+π6
  • 7、若复数z满足zz¯=m+i3i , 则实数m=(       )
    A、12 B、13 C、12 D、13
  • 8、已知全集U=R , 集合A=xx23x100 , 则UA=(       )
    A、5,2 B、2,5 C、5,2 D、2,5
  • 9、已知P是椭圆Ex216+y29=1上一点,F1F2分别为E的左、右焦点,则PF1+PF2=(       )
    A、8 B、6 C、4 D、3
  • 10、(1)求值:tan13°+tan47°+3tan13°tan47°.

    (2)在非直角ABC中,求证:tanA+tanB+tanC=tanAtanBtanC

    (3)高斯是德国著名的数学家,近代数学的奠基人之一,享有数学“王子”的称号,他和阿基米德、牛顿并列为世界的三大数学家,用其名字命名的“高斯函数”为:设xR , 符号x表示不大于x的最大整数,则y=x称为“高斯函数”,例如3.5=42.5=23=3.在非直角ABC中,角A、B、C满足tanAtanBtanCtanA+tanB+tanC , 若ABC , 试求tanCtanB.

  • 11、在ABC中,角A,B,C所对的边分别为a,b,c,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)

    cacosB=b3asinB;②bsinB+csinCasinA=bsinC.

    (1)、求A;
    (2)、若ABC的面积为43 , 内角A的角平分线交边BC于E,求AE的最大值;
    (3)、若a=7 , 边BC上的中线AD=112 , 设点O为ABC的外接圆圆心,求AOAD的值.
  • 12、已知向量m=2sinx,2cosxn=cosx,3cosxfx=mn+3.
    (1)、若将函数fx图象向左平移π4个单位长度,再把得到的图象上所有点横坐标缩短为原来的12 , 得到函数gx , 试求gx0,π3上的单调递减区间;
    (2)、锐角ABC中角A,B,C所对的边分别为a,b,c,若a=6fA=3 , 求ABC周长的取值范围.
  • 13、已知向量a=2cosθ,sinθb=1,2
    (1)、若ab , 求sinθcosθsinθ+cosθ的值;
    (2)、若θ=452atb2a+b垂直,求实数t的值;
    (3)、若θ=90 , 求向量a在向量b上的投影向量的坐标.
  • 14、已知锐角α的终边经过点2,1
    (1)、求cos2αsin2α
    (2)、若cosβα=210 , 且βπ2,π , 求α+β.
  • 15、已知向量a,b,c满足a=4b=42a,b=π4acbc=0 , 则c的最大值为.
  • 16、已知cosπ3α=13 , 则cos2α+π3=.
  • 17、若纯虚数z=a21+a+1i , 则a=.
  • 18、已知向量ab的数量积(又称向量的点积或内积):ab=abcosa,b , 其中a,b表示向量ab的夹角;定义向量ab的向量积(又称向量的叉积或外积):a×b=absina,b , 其中a,b表示向量ab的夹角,则下列说法正确的是(       )
    A、a,b为非零向量,且a×b=ab , 则a,b=π4 B、若四边形ABCD为平行四边形,则它的面积等于AB×AD C、已知点A2,0B1,3O为坐标原点,则OA×OB=23 D、a×b=33ab=3 , 则a+2b的最小值为12+83
  • 19、在ABC中,角A,B,C所对的边分别为a,b,c,则下列说法中正确的有(       )
    A、A=45°a=23b=4 , 则ABC有两解 B、a2+b2>c2 , 则ABC为锐角三角形 C、ccosB=bcosC , 则ABC为等腰三角形 D、B=60°b2=ac , 则ABC为等边三角形
  • 20、下列命题中正确的是(       )
    A、z=12i , 则z=5 B、z=i+1 , 则zz¯=2 C、已知m,nRi是关于x的方程x2+mx+n=0的一个根,则m+n=1 D、若复数z满足z1=2 , 则z+i的最大值为2+2
上一页 1246 1247 1248 1249 1250 下一页 跳转