• 1、如图1,矩形ABCD中,AB=2BC=22 , 点ECD的中点,现将ADE沿AE折起,使得平面ADE平面ABCE , 得到如图2所示的四棱锥DABCE , 点P为棱DB上一点.

           

    (1)、证明:ADBE
    (2)、是否存在点P , 使得直线EP与平面BCD所成角的正弦值为3311?若存在,求DP:DB的值;若不存在,请说明理由.
  • 2、如图,在梯形ABCD中,ABCDAB=BC=2CD=2AD=3ADC=90 , 将ACD沿AC折起,使点D到达点P位置,此时二面角PACB120 , 连接PB,得到三棱锥PABC , 则该三棱锥外接球的表面积为

  • 3、第三次人工智能浪潮滚滚而来,以ChatGPT发布为里程碑,开辟了人机自然交流的新纪元.ChatGPT所用到的数学知识并非都是遥不可及的高深理论,概率就被广泛应用于ChatGPT中,某学习小组设计了如下问题进行研究:甲和乙两个箱子中各装有5个大小相同的小球,其中甲箱中有3个红球、2个白球,乙箱中有4个红球、1个白球,从甲箱中随机抽出2个球,在已知抽到红球的条件下,则2个球都是红球的概率为;掷一枚质地均匀的骰子,如果点数小于等于4,从甲箱子中随机抽出1个球;如果点数大于等于5,从乙箱子中随机抽出1个球,若抽到的是红球,则它是来自乙箱的概率是
  • 4、x+12x+y5的展开式中y的系数为
  • 5、画法几何的创始人——法国数学家加斯帕尔·蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆C:x2a2+y2b2=1(a>b>0)F1F2分别为椭圆的左、右焦点,F22,0 , 其短轴上的一个端点到F2的距离为3 , 点A在椭圆上,直线l:bx+aya2b2=0 , 则(     )
    A、直线l与蒙日圆相切 B、椭圆C的蒙日圆方程为x2+y2=2 C、若点P是椭圆C的蒙日圆上的动点,过点P作椭圆C的两条切线l1l2 , 分别交蒙日圆于MN两点,则MN的长恒为4 D、记点A到直线l的距离为d , 则dAF2的最小值为2+22
  • 6、若2x110=a0+a1x1+a2x12++a10x110xR , 则(       )
    A、a0=1 B、a1+a2++a10=310 C、a2=180 D、a1+2a2+3a3++10a10=10×39
  • 7、如图,在平行六面体ABCDA1B1C1D1中,E,F分别是AB,BC的中点,以A为顶点的三条棱长都是2,A1AD=A1AB=BAD=60 , 则下列说法正确的是(       )

    A、EF//平面A1C1D B、AC1平面A1BD C、AC1=32 D、AC1AC夹角的余弦值为223
  • 8、已知函数fx的定义域为R,f'xfx的导函数.若f1=e , 且f'x+ex<fxR上恒成立,则不等式fx<2xex的解集为(       )
    A、,2 B、2,+ C、,1 D、1,+
  • 9、如图,平面四边形ABCD中,AB//CDAB=2CD=22,AD=1.若A,B是椭圆C1和双曲线C2的两个公共焦点,C,DC1C2的两个交点,则C1C2的离心率之积为(       )

    A、2 B、3 C、2 D、3
  • 10、已知Cn15+Cn33Cn33=195 , 则n的值是(       )
    A、9 B、7 C、9或6 D、8
  • 11、若C24m=C24m+2 , 则C32+C42++Cm2的值为(       )
    A、83 B、119 C、164 D、219
  • 12、设随机变量X的概率分布列为:

    X

    1

    2

    3

    4

    P

    13

    m

    14

    16

    PX21=(    )

    A、14 B、16 C、56 D、512
  • 13、我们知道,复数可以用a+bi(a,bR)的形式来表示,与复平面内的点Z(a,b)是一一对应的,复数的模|z|=|a+bi|=a2+b2 , 即是复平面内的点Z(a,b)到坐标原点O的距离OZ . 又复数与平面向量OZ=(a,b)也是一一对应的,所以也可以借助与x非负半轴为始边,以向量OZ所在射线(射线OZ)为终边的角θ来刻画OZ的方向,在此基础上再来认识一下复数的乘除法运算.

    如:z1=1+3iz1=2 , 角θ1=π6z2=3+iz2=2 , 角θ2=π3 , 由z1z2=(1+3i)×(3+i)=4i . 即:复数z=z1z2 , 相当于将复数z1伸长了z2倍,同时逆时针旋转角θ2后得到.

    (1)、计算a+bii(a,bR) , 并从模与角度的变化来解释除法运算的几何意义;
    (2)、现将直角坐标平面内任意一点P(x,y) , 绕坐标原点逆时针旋转θ角,并将OP的长度伸长m倍后得到点Qx',y' . 请借助以上复数运算的知识,推导点P与点Q伸缩旋转变换的坐标关系;
    (3)、已知反比例函数C:y=1x , 现将函数C上的点P(x,y)都逆时针旋转45°后得到点Qx',y'的曲线C' , 求曲线C'上的点Qx',y'坐标关系式.
  • 14、设ab是两个不共线向量,AB=2a+λbBC=a+bCD=a2b . 若A,C,D三点共线,则实数λ=
  • 15、如图,设Ox,Oy是平面内相交成60°角的两条数轴,ij分别是与x轴,y轴正方向同向的单位向量,若向量OP=xi+yj , 则把有序数对(x,y)叫做向量OP在坐标系Oxy中的坐标,即OP=(x,y) . 在坐标系Oxy中,设a=x1,y1b=x2,y2 , 则下列说法正确的是(       )

    A、a+b=x1+x2,y1+y2 B、a=x12+y12 C、ab , 则x1x2+y1y2=0 D、a//b , 则x1y2x2y1=0
  • 16、在ABC中,角A,B,C所对的边分别为a,b,对于以下命题,其中正确的是(       )
    A、等式c=acosB+bcosA恒成立 B、A>B , 则sinA>sinB C、sin2A+sin2Bsin2C>0 , 则ABC是锐角三角形 D、A=60°a=2b=6 , 则满足条件的三角形有两个
  • 17、圣·索菲亚教堂是哈尔滨的标志性建筑其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美.为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB,在它们之间的地面上距离B约为40m的点M(B,M,D三点共线)处测得楼顶A、教堂顶C的仰角分别是45°60° , 在楼顶A处测得塔顶C的仰角为15° , 则估算索菲亚教堂的高度CD约为(       )

    A、52m B、54m C、60m D、80m
  • 18、在平行四边形ABCD中,AB=1AD=2A=60DE=2EC , 则AEBD=(       )
    A、103 B、3 C、2 D、32
  • 19、辽宁省博物馆收藏的商晚期饕餮纹大圆鼎(如图1)出土于辽宁省略左县小波汰沟.此鼎直耳,深腹,柱足中空,胎壁微薄,口沿下及足上端分别饰单层兽面纹,足有扉棱,耳、腹、足皆有炱痕.它的主体部分可以近似地看作是半球与中空无盖圆柱的组合体(忽略鼎壁厚度),如图2所示.已知球的半径为R,圆柱的高近似于半球的半径,则此鼎主体部分的容积与外表面积之比约为(       )

    A、23R B、712R C、12R D、512R
  • 20、设ABC的内角A,B,C的对边分别为a,b,c , 且bsinA=3acosB
    (1)、求B的大小
    (2)、若b=3 , 求ABC周长的范围
上一页 5 6 7 8 9 下一页 跳转