相关试卷

  • 1、在ABC中,ADBECF分别是BCCAAB的中线且交于点O , 则下列结论正确的是(       )
    A、ABBC=CA B、AO=13AB+AC C、AD+BE+CF=0 D、OA+OB+OC=0
  • 2、已知点GABC的重心,D,E分别为ABAC边上一点,DGE三点共线,FBC的中点,若AF=λAD+μAE , 则1λ+4μ的最小值为(       )
    A、272 B、7 C、92 D、6
  • 3、若函数fx=sinωx3cosωxω>0的图象的一条对称轴为x=π3 , 则ω的最小值为(       )
    A、32 B、2 C、52 D、3
  • 4、已知点E为平行四边形ABCD对角线BD上一点,且DE=2BE , 则AE=(       )
    A、23AB+13AD B、23AB13AD C、13AB+23AD D、13AB23AD
  • 5、若tanθ=−2 , 则1−sin2θ2sinθ⋅sinθπ4=(       )
    A、12 B、12 C、32 D、32
  • 6、已知向量a=1,tb=3,9 , 若a//b , 则t=(       )
    A、1 B、2 C、3 D、4
  • 7、在空间直角坐标系中,点P(1,2,3)关于xOy平面的对称点P'的坐标为(       )
    A、(1,2,3) B、(1,2,3) C、(1,2,3) D、(1,2,3)
  • 8、有5辆车停放6个并排车位,货车甲车体较宽,停靠时需要占两个车位,并且乙车不与货车甲相邻停放,则共有(       )种停放方法.
    A、72 B、144 C、108 D、96
  • 9、设i是虚数单位,则复数i12+i在复平面内所对应的点位于(    )
    A、第一象限 B、第二象限 C、第三象限 D、第四象限
  • 10、已知定义在R上的可导函数f(x)的导函数为f(x),满足f'x<fxfx+3为偶函数.fx+112为奇函数,若f(9)+f(8)=32 , 则不等式fx>ex的解集为(  )
    A、,0 B、0,+ C、1,+ D、6,+
  • 11、已知(x+b)5=a5x5+a4x4+a3x3+a2x2+a1x+a0 , 若a3=40 , 则b=.
  • 12、已知双曲线x2a2y2b2=1a>0,b>0的左、右焦点分别为F1F2 , 双曲线上一点A关于原点O对称的点为B,且满足AF1BF1=0tanABF1=13 , 则该双曲线的渐近线方程为
  • 13、函数y=x+12x的最大值为.
  • 14、若圆C:x2+y2+mx+4y1=0关于直线y=3x+1对称,则m=
  • 15、已知cosαcosαsinα=2 , 则tanα+π4sin2α=(       )
    A、12 B、95 C、115 D、2
  • 16、椭圆x25+y2m=1m>0的长轴长为6,则该椭圆的离心率为(       )
    A、223 B、23 C、316 D、116
  • 17、已知x>0,y>0 , 且1x+2y=1 , 则2x+1y的最小值为(       )
    A、4 B、421 C、6 D、8
  • 18、5个人排成一排,如果甲必须站在排头或排尾,而乙不能站在排头或排尾,那么不同站法总数为(       )
    A、18 B、36 C、48 D、60
  • 19、已知等差数列an的首项为1,若a1,a2,a3+1成等比数列,则a4=(     )
    A、-2 B、4 C、8 D、-2或4
  • 20、已知aRi为虚数单位,若复数2+ia+i的实部与虚部相等,则a=(     )
    A、3 B、2 C、2 D、3
上一页 552 553 554 555 556 下一页 跳转