相关试卷

  • 1、若a>b,c>d,则(     )
    A、ac2>bc2 B、a-c>b-d C、a-d>b-c D、ac>bd
  • 2、已知函数fx=ax22ax1aR
    (1)、若不等式fx<0的解集为R,求a的取值范围;
    (2)、求关于x的不等式fx>x3的解集.
  • 3、将进货单价为8元的商品按10元一个销售时,每天可以卖出100个,若这种商品的销售价每个上涨1元,则销量就减少10个,为了争取最大利益,此商品的售价应定为多少元?
  • 4、设集合A=x|x2x6>0,B=x|4<3x7<8.

    (1)求AB,AB

    (2)已知集合C=x|a<x<2a+1 , 若CB , 求实数a的取值范围.

  • 5、已知fx=2x+1x+1
    (1)、判断fx的奇偶性,并说明理由;
    (2)、用定义法证明fx1,+上是增函数.
  • 6、设函数f(x)=x2-2x+3,x[0,3] , 则该函数的值域为                      
  • 7、函数fx=113x2的定义域为
  • 8、函数fx=x2-x-12的单调递减区间为.
  • 9、已知集合A=1,3,6 , 则集合A的真子集个数为(    )
    A、5 B、6 C、7 D、8
  • 10、定义:若对kN*,k2,ak1+ak+12ak恒成立,则称数列an为“上凸数列”.
    (1)、若an=n21 , 判断an是否为“上凸数列”,如果是,给出证明;如果不是,请说明理由.
    (2)、若an为“上凸数列”,则当mn+2m,nN*时,am+anam1+an+1

    (ⅰ)若数列Snan的前n项和,证明:Snn2a1+an

    (ⅱ)对于任意正整数序列x1,x2,x3,,xi,,xnn为常数且n2,nN*),若i=1nxi21i=1nxiλ21恒成立,求λ的最小值.

  • 11、设函数fx=x2+axlnxaR.
    (1)、若a=1 , 求函数y=fx的单调区间;
    (2)、若函数fx在区间0,1上是减函数,求实数a的取值范围;
    (3)、过坐标原点O作曲线y=fx的切线,证明:切线有且仅有一条,且求出切点的横坐标.
  • 12、锐角ABC中,C=2B,BC边上的高为4,则ABC面积的取值范围为
  • 13、已知函数fx=12sin2x.若曲线y=fx在点Ax1,fx1处的切线与其在点Bx2,fx2处的切线相互垂直,则x1x2的一个取值为.
  • 14、设z¯为复数z的共轭复数,若复数z满足z2+z+3=0 , 则z+z¯=
  • 15、已知函数fx=1x+1+1xx , 设x1,x2,x3是曲线y=fx与直线y=a的三个交点的横坐标,且x1<x2<x3 , 则(       )
    A、存在实数a , 使得x2x1>1 B、对任意实数a , 都有x3x1>3 C、存在实数a , 使得x3x2>3 D、对任意实数a , 都有x3x2>1
  • 16、知名数学教育家单墫曾为中学生写了一个小册子《十个有趣的数学问题》,其中提到了开普勒的将球装箱的方法:考虑一个棱长为2的正方体,分别以该正方体的8个顶点及6个面的中心为球心作半径为22的球,这些球在正方体内的体积之和与正方体的体积之比为(       )
    A、423π B、223π C、23π D、26π
  • 17、已知函数fx=2x8xxax(a>0a1)是偶函数,则a=(     )
    A、12 B、14 C、2 D、4
  • 18、2024年奥运会在巴黎举行,中国代表团获得了40枚金牌、27枚银牌、24枚铜牌,共91枚奖牌.为了增加学生对奥运知识的了解,弘扬奥运精神,某校组织高二年级学生进行了奥运知识能力测试.根据测试成绩,将所得数据按照40,5050,6060,7070,8080,9090,100分成6组,其频率分布直方图如图所示.

    (1)、求该样本的第80百分位数;
    (2)、试估计本次奥运知识能力测试成绩的平均分(同一组中的数据以该组数据所在区间的中点值为代表);
    (3)、该校准备对本次奥运知识能力测试成绩在60,80内的学生,采用按比例分配的分层随机抽样方法抽出6名同学,再从抽取的这6名同学中随机抽取2名同学了解情况,求这2名同学中,有一人成绩在60,70内,另一人成绩在70,80内的概率.
  • 19、已知等差数列an满足a3+a5=221+2a2=a4 , 数列bn满足bn+12=bnbn+2b2=2b1b4=8.
    (1)、求数列anbn的通项公式;
    (2)、求数列1anan+1的前n项和Sn
    (3)、求数列anbn的前n项和Tn.
  • 20、已知向量a=x1,y1b=x2,y2 , 定义新运算:ab=x1x2+y1y2.若函数fx=ab , 则称fx为向量ab的点积函数.例如:向量a=2,xb=cosx,1 , 则向量ab的点积函数fx=2cosxx.
    (1)、若向量m=1,1n=ucosx,vsinxuvR),且向量mn的点积函数fx=2cosx+2sinx , 求n的值;
    (2)、若向量m=sin2x,4n=1,cosx1 , 求向量mn的点积函数gx的值域;
    (3)、若向量m=sin2xπ6,4n=2,cos2x+π3的点积函数为hx , 且存在xπ4,2π3 , 使得2hx+k3成立,求k的取值范围.
上一页 47 48 49 50 51 下一页 跳转