相关试卷
-
1、( )A、 B、1 C、 D、
-
2、某同学参加跳远测试,共有3次机会.用事件()表示随机事件“第i()次跳远成绩及格”,那么事件“前两次测试成绩均及格,第三次测试成绩不及格”可以表示为( )A、 B、 C、 D、
-
3、已知向量 , , 则( )A、 B、 C、34 D、65
-
4、已知()为纯虚数,则( )A、1 B、 C、2 D、4
-
5、已知集合 , , 则( )A、 B、 C、 D、
-
6、函数的值域为.
-
7、如图,点是以为直径的半圆上的动点,已知 , 且 , 平面平面
(1)、证明:;(2)、若线段上存在一点满足 , 当三棱锥的体积取得最大值时,求平面与平面夹角的余弦值. -
8、(1)、直线与直线平行,求的值;(2)、直线与直线垂直,求的值.
-
9、已知、 , 直线的斜率是直线斜率的倍,则直线的倾斜角为.
-
10、如图,在直四棱柱中, , , 点在以线段为直径的圆上运动,且三点共线,点分别是线段的中点,下列说法中正确的有( )
A、存在点 , 使得平面与平面不垂直 B、当直四棱柱的体积最大时,直线与直线垂直 C、当时,过点的平面截该四棱柱所得的截面周长为 D、当时,过的平面截该四棱柱的外接球,所得截面面积的最小值为 -
11、点是椭圆上的点,以为圆心的圆与轴相切于椭圆的焦点 , 圆与轴相交于两点,若是锐角三角形,则椭圆离心率的取值范围是( )A、 B、 C、 D、
-
12、已知递减等差数列 , , 是方程两个实根,当时,( )A、2026 B、2025 C、1012 D、2
-
13、已知函数.(1)、求的最小值;(2)、记为的导函数,设函数有且只有一个零点,求的取值范围.
-
14、如图,在直三棱柱中, , , , , 分别是 , 的中点,动点在直线上,且.
(1)、是否存在点 , 使得?若存在,试确定点的位置;若不存在,请说明理由;(2)、当取何值时,直线与平面所成角的正弦值为;(3)、求动点到直线的距离的取值范围. -
15、已知内角所对的边分别为 , 面积为 , 且 , 求:(1)、求角A的大小;(2)、求边中线长的最小值.
-
16、2024年全国田径冠军赛暨全国田径大奖赛总决赛于6月30日在山东省日照市落幕.四川田径队的吴艳妮以12秒74分的成绩打破了100米女子跨栏的亚洲纪录,并夺得了2024年全国田径冠军赛女子100米跨栏决赛的冠军,通过跑道侧面的高清轨道摄像机记录了该运动员时间(单位:)与位移(单位:)之间的关系,得到如下表数据:
2.8
2.9
3
3.1
3.2
24
25
29
32
34
画出散点图观察可得与之间近似为线性相关关系.
(1)、求出关于的线性回归方程;(2)、记 , 其中为观测值,为预测值,为对应的残差,求前3项残差的和.参考数据: , 参考公式:.
-
17、若不等式的解集是 ,
(1)求a的值;
(2)求不等式的解集;
(3)求不等式的解集.
-
18、不等式的解集为.
-
19、学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加径赛,有8人参加田赛,有14人参加球类比赛,有3人同时参加参加径赛和田赛,有3人同时参加径赛和球类比赛,没有人同时参加三项比赛.只参加球类比赛的人数为.
-
20、已知函数 , 则( )A、在上单调递增 B、在上单调递减 C、在上单调递减 D、在上单调递增