相关试卷
-
1、已知函数为偶函数,为奇函数,且满足 , 则( )A、 B、 C、0 D、
-
2、已知定义域为的函数满足 , 则( )A、3 B、2 C、1 D、0
-
3、设 , 不等式的解集为或 , 则( )A、 B、0 C、2 D、7
-
4、二次函数满足条件与时的函数值相等,则时的函数值为( )A、5 B、6 C、8 D、7
-
5、已知i为虚数单位,复数满足 , 则( )A、 B、 C、 D、
-
6、若集合 , , 则( )A、 B、 C、 D、
-
7、已知函数 , , 集合 .(1)、若集合中有且仅有个整数,求实数的取值范围;(2)、集合 , 若存在实数 , 使得 , 求实数b的取值范围.
-
8、求下列各式的最值(1)、已知 , 求函数 的最大值(2)、设 , 则的最小值(3)、设正实数 , , 满足 , 当取得最大值时,求的最大值.
-
9、已知 , 函数 .
(1)、当时,画出的图象,并写出的单调递增区间;(2)、当时,求在区间上的最小值. -
10、已知 , .(1)、用定义判断并证明函数在上的单调性;(2)、若 , 求实数的取值范围.
-
11、已知集合(1)、求集合A;(2)、 .
-
12、已知 , 函数在区间[1,4]上的最大值是5,则a的取值范围是
-
13、已知集合 , 集合 , 命题: , 命题: , 若是的充分条件,则实数的取值范围是.
-
14、设函数 , 若 , 则实数a的值为 .
-
15、已知 满足且 , 下列选项中一定成立的是( )A、 B、 C、 D、
-
16、下列各组函数中,是同一函数的是( )A、与 B、与 C、与 D、与
-
17、函数的图象与直线的交点个数( )A、至少有1个 B、至多有1个 C、仅有1个 D、可能有无数多个
-
18、已知集合 , 则满足条件的集合的个数有( ).A、6 个 B、7 个 C、8 个 D、9 个
-
19、已知圆 , P是圆C上动点,Q为圆C与x轴负半轴交点,E是中点.(1)、求点E的轨迹方程;(2)、过点的直线与点E的轨迹交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分?若存在,请求出点N的坐标;若不存在,请说明理由.
-
20、如图1,在边长为2的菱形ABCD中,于点 , 将沿DE折起到的位置,使 , 如图2.
(1)、求多面体的体积;(2)、求二面角的余弦值;(3)、在线段BD上是否存在点 , 使平面平面?若存在,求出的值;若不存请说明理由.