相关试卷

  • 1、已知a>0,b>0 , 且a+b=1 , 则(       )
    A、ab的最大值为14 B、a2+b2的最大值为12 C、1a+4b的最小值为9 D、2a+1+2b+1的最小值为22
  • 2、设a=0.32,b=20.3,c=log22 , 则a,b,c的大小关系是(     )
    A、a<b<c B、a<c<b C、b<a<c D、b<c<a
  • 3、为促进科技创新,某医学影像设备设计公司决定将在2025年对研发新产品团队进行奖励,奖励方案如下:奖金y(单位:万元)随收益x(单位:万元)的增加而增加,且奖金不超过90万元,同时奖金不超过收益的20%,预计收益x36,900.
    (1)、分别判断以下三个函数模型:y=1.006xy=3lnx+4y=x , 能否符合公司奖励方案的要求,并说明理由;(参考数据:1.00675088.811.00676094.29ln363.58ln9006.80
    (2)、已知函数模型y=ax10符合公司奖励方案的要求,求实数a的取值范围.
  • 4、已知函数fx=x2+ax+4x为奇函数.
    (1)、用函数单调性的定义证明:fx在区间2,+上是单调递增;
    (2)、若对任意的x2,4 , 不等式fxm2m1恒成立,求实数m的取值范围;
  • 5、已知fx是定义在R上的奇函数,当x0时,fx=logax+1a>0a1.

    (1)求函数fx的解析式;

    (2)若1<f2<1 , 求实数a的取值范围.

  • 6、已知命题p:关于x的方程x22ax+a2+a1=0有实数根,命题qm1am+1.
    (1)、若命题p是真命题,求实数a的取值范围;
    (2)、若pq的必要不充分条件,求实数m的取值范围.
  • 7、幂函数fx=2m26m+5x2m3没有零点,则函数gx=logax+ma>0a1恒过定点
  • 8、若方程5lnx=2x的解所在区间为k1,kkN* , 则k的值为
  • 9、函数fx=log152x2+3x+2的单调递减区间为
  • 10、已知函数y=a(12)x1+b的图象过原点,且无限接近于直线y=2 , 但不与该直线相交,则(       )
    A、a=1,b=2 B、a=1,b=3 C、a=4,b=2 D、a=4,b=3
  • 11、已知函数y=fx满足:f(x1)=x2+1 , 则fx=(       )
    A、x4+2x2+2,(x0) B、x,(x0) C、x4+2x2+2,(x1) D、x,(x1)
  • 12、若abc为实数,则下列命题正确的是(       )
    A、a>b , 则ac2>bc2 B、a<b<0 , 则a2>ab>b2 C、a<b , 则1a>1b D、若a<b<0,则ba>ab
  • 13、设集合M={x|1x2xZ}N={x|y=lg(x+1)},MN=(       )
    A、(1,+) B、{1,0,1,2} C、{0,1,2} D、{1,2}
  • 14、已知在平面直角坐标系xOy中,动点M(x,y)与定点F(3,0)的距离和M到定直线l:x=23的距离的比是常数22
    (1)、求动点M的轨迹G的方程;
    (2)、已知直线x=my+3与轨迹G交于P,Q两点.

    ①求m的取值范围;

    ②已知点D2,1 , 直线DP,DQ与直线x=3分别交于点M,N , 平面内是否存在一定点H , 使得四边形DMHN为平行四边形?若存在,求出点H的坐标;若不存在,请说明理由.

  • 15、如图,在三棱锥ABCD中,DB=DC=BC=2AD=7AB=5,平面ACB平面DCB,EBC的中点.

       

    (1)、求证:AEBC.
    (2)、点F满足EF=λDA0<λ<1 , 且CD//平面FAB.

    (i)求λ的值;

    (ii)求平面DAB与平面FAB的夹角的余弦值.

  • 16、已知椭圆C的方程为x2a2+y2b2=1a>b>0 , 左焦点为F20 , 且离心率为63
    (1)、求椭圆C的方程;
    (2)、经过椭圆C的右焦点且斜率为1的直线l与椭圆C交于M,N两点,求MN的长.
  • 17、点P为椭圆x216+y215=1上任意一点,EF为圆N:(x1)2+y2=1的任意一条直径,则PEPF的取值范围是
  • 18、已知直线l:(1+2m)x+(m2)y+63m=0与圆C:x2+y24x=0相交于AB两点,则下列说法正确的有(     )
    A、AB最大时,m=8 B、ABC面积最大时,AB=22 C、直线l过定点P , 且PAPB=3 D、若直线OAOB的斜率分别为k1k2 , 则k1+k2=43
  • 19、已知椭圆C:x24+y23=1的左右焦点分别为F1F2 , 点P是椭圆上的一个动点,则以下说法正确的是(     )
    A、F1PF2的周长为8 B、F1PF2=60° , 则F1PF2的面积为3 C、椭圆C上存在两个点,使得F1PF2=90° D、1PF1+1PF2的最小值为1
  • 20、某校1000名学生参加数学竞赛,随机抽取了50名学生的竞赛成绩(单位:分),成绩的频率分布直方图如图所示,则(       )

    A、频率分布直方图中a的值为0.005 B、估计这50名学生的竞赛成绩的上四分位数为85 C、估计这50名学生的竞赛成绩的众数为80 D、估计总体中成绩落在[60,70)内的学生人数为150
上一页 2 3 4 5 6 下一页 跳转