相关试卷
-
1、记为数列的前项和, .(1)、求和的通项公式;(2)、设数列的前项和为 , 证明: .
-
2、“村BA”后,贵州“村超”又火出圈!所谓“村超”,其实是目前火爆全网的贵州乡村体育赛事——榕江(三宝侗寨)和美乡村足球超级联赛,被大家简称为“村超”.“村超”的民族风、乡土味、欢乐感,让每个人尽情享受着足球带来的快乐.某校为了丰富学生课余生活,组建了足球社团.足球社团为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各 50名进行调查,部分数据如表所示:
喜欢足球
不喜欢足球
合计
男生
20
女生
15
合计
100
(1)、根据所给数据完成上表,依据α=0.005的独立性检验,能否有99.5%的把握认为该中学学生喜欢足球与性别有关?(2)、社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范定点射门.据统计,这两名男生进球的概率均为 , 这名女生进球的概率为 , 每人射门一次,假设各人进球相互独立,求3 人进球总次数X的分布列和数学期望.附:
α
0.1
0.05
0.01
0.005
0.001
x
2.706
3.841
6.635
7.879
10.828
-
3、已知抛物线:与双曲线:相交于点 .(1)、若 , 求抛物线的准线方程;(2)、记直线l:与、分别切于点M、N,当p变化时,求证:的面积为定值,并求出该定值.
-
4、某工厂生产一种产品测得数据如下:
尺寸
38
48
58
68
78
88
质量
16.8
18.8
20.7
22.4
24
25.5
质量与尺寸的比
0.442
0.392
0.357
0.329
0.308
0.290
(1)、若按照检测标准,合格产品的质量与尺寸之间近似满足关系式(c、d为大于0的常数),求y关于x的回归方程;(2)、已知产品的收益z(单位:千元)与产品尺寸和质量的关系为 , 根据(1)中回归方程分析,当产品的尺寸x约为何值时(结果用整数表示),收益z的预报值最大?附:(1)参考数据: , , , .
(2)参考公式:对于样本 , 其回归直线的斜率和截距的最小二乘估计公式分别为: , , .
-
5、已知O为坐标原点,在抛物线上存在两点E,F,使得是边长为4的正三角形,则 .
-
6、若 , 则下列结论中正确的是( )A、 B、 C、 D、
-
7、(多选)已知 , 则下列结论正确的是( )A、 B、 C、 D、
-
8、某市一个经济开发区的公路路线图如图所示,七个公司分布在大公路两侧,有一些小公路与大公路相连.现要在大公路上设一快递中转站,中转站到各公司(沿公路走)的距离总和越小越好,则这个中转站最好设在( )A、路口 B、路口 C、路口 D、路口
-
9、设O为坐标原点,抛物线与双曲线有共同的焦点F,过F与x轴垂直的直线交于A,B两点,与在第一象限内的交点为M,若 , , 则双曲线的离心率为( )A、 B、 C、 D、
-
10、已知 , 且 , 其中是虚数单位,则等于( )A、5 B、 C、 D、1
-
11、已知抛物线上一点到其焦点的距离为5,则( )A、3 B、4 C、5 D、6
-
12、若向量满足与的夹角为 , 则( )A、 B、 C、 D、2
-
13、设命题: , , 则是( )A、 B、 C、 D、
-
14、A={1,2,3,4,5,6,7,8}, , 从中选出构成一列: .相邻两项满足:或 , 称为K列.(1)、若K列的第一项为(3,3),求第二项;(2)、若为K列,且满足i为奇数时,;i为偶数时,;判断:(3,2)与(4,4)能否同时在中,并说明理由;(3)、证明:M中所有元素都不构成K列.
-
15、函数f(x)定义域为 , 且f(0)=0, , f(x)在A(a,f(a))(a≠0)
处的切线为l1.
(1)、求的最大值;(2)、证明:当 , 除切点 外, 均在 上方;(3)、 当 时,直线 过点 且与 垂直,、 与 x 轴的交点横坐标分别为 、 , 求 的取值范围. -
16、已知椭圆E: 的离心率为 , 椭圆上的点到两个焦点的距离之和为4.(1)、求椭圆方程;(2)、设O为原点,为椭圆上一点,直线 与 和y=-2分别相交于A、B两点,设△OMA和△OMB的面积分别为S1和S2 , 比较和的大小.
-
17、某次考试中,只有一道单项选择题考查了某个知识点,甲、乙两校的高一年级学生都参加了这次考试.为了解学生对该知识点的掌握情况,随机抽查了甲、乙两校高一年级各100名学生该题的答题数据,其中甲校学生选择正确的人数为80,乙校学生选择正确的人数为75.假设学生之间答题相互独立,用频率估计概率.(1)、估计甲校高一年级学生该题选择正确的概率ρ;(2)、从甲、乙两校高一年级学生中各随机抽取1名,设X为这2名学生中该题选择正确的人数,估计X=1的概率及X的数学期望;(3)、假设:如果没有掌握该知识点,学生就从题目给出的四个选项中随机选择一个作为答案;如果掌握该知识点,甲校学生选择正确的概率为100%,乙校学生选择正确的概率为85%.设甲、乙两校高一年级学生掌握该知识点的概率估计值分别为p1,p2,判断p1与p2的大小(结论不要求证明).
-
18、四棱锥P—ABCD中,△ACD与△ABC为等腰直角三角形,∠ADC=90°,∠BAC=90° ,E为BC的中点.(1)、F为PD的中点,G为PE的中点,证明:FG∥面PAB;(2)、若PA⊥平面ABCD,PA=AC,求AB与面PCD所成角的正弦值.
-
19、在△ABC中, ,(1)、求c;(2)、在以下三个条件中选择一个作为已知,使得△ABC存在,求BC的高.
① , ② , ③面积为
-
20、关于定义域为R的函数f(x),以下说法正确的有.
①存在在R上单调递增的函数f(x)使得f(x)+f(2x)=-x恒成立;
②存在在R上单调递减的函数f(x)使得f(x)+f(2x)=-x恒成立;
③使得f(x)+f(-x)=cosx恒成立的函数f(x)存在且有无穷多个;
④使得f(x)-f(-x)=cosx恒成立的函数f(x)存在且有无穷多个.