相关试卷
-
1、在四棱柱中,四边形是正方形, , , , 则的长为.
-
2、已知函数 , 且 , 则实数的值.
-
3、在棱长为2的正方体中,点满足 , 其中 , , 则( )A、平面平面 B、当时,三棱锥的体积为定值 C、当时,存在点 , 使得 D、当时,存在点 , 使得平面
-
4、已知定义域为的函数的导函数为 , 且的图象如图所示,则( )A、在上单调递减 B、有极小值 C、有2个极值点 D、在处取得最大值
-
5、已知函数及其导函数的定义域均为R,且 , 则不等式的解集为( )A、 B、 C、 D、
-
6、当时,函数取得最小值 , 则( )A、2 B、1 C、-1 D、-2
-
7、曲线在点处切线的倾斜角为( )A、 B、 C、 D、
-
8、已知函数 .(1)、讨论的单调性;(2)、若函数有两个零点 ,
(i)求m的取值范围;
(ii)求证: .
-
9、已知椭圆的左顶点为 , 两个焦点与短轴一个顶点构成等边三角形,过点且与轴不重合的直线与椭圆交于两点.(1)、求椭圆的方程;(2)、若过点且平行于的直线交直线于点 , 求证:直线恒过定点.
-
10、如图1,矩形中, , 点为的中点,现将沿折起,使得平面平面 , 得到如图2所示的四棱锥 , 点为棱上一点.(1)、证明:;(2)、是否存在点 , 使得直线与平面所成角的正弦值为?若存在,求的值;若不存在,请说明理由.
-
11、如图,在梯形ABCD中, , , , , 将沿AC折起,使点D到达点P位置,此时二面角为 , 连接PB,得到三棱锥 , 则该三棱锥外接球的表面积为 .
-
12、第三次人工智能浪潮滚滚而来,以ChatGPT发布为里程碑,开辟了人机自然交流的新纪元.ChatGPT所用到的数学知识并非都是遥不可及的高深理论,概率就被广泛应用于ChatGPT中,某学习小组设计了如下问题进行研究:甲和乙两个箱子中各装有5个大小相同的小球,其中甲箱中有3个红球、2个白球,乙箱中有4个红球、1个白球,从甲箱中随机抽出2个球,在已知抽到红球的条件下,则2个球都是红球的概率为;掷一枚质地均匀的骰子,如果点数小于等于4,从甲箱子中随机抽出1个球;如果点数大于等于5,从乙箱子中随机抽出1个球,若抽到的是红球,则它是来自乙箱的概率是 .
-
13、的展开式中的系数为 .
-
14、画法几何的创始人——法国数学家加斯帕尔·蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆分别为椭圆的左、右焦点, , 其短轴上的一个端点到的距离为 , 点在椭圆上,直线 , 则( )A、直线与蒙日圆相切 B、椭圆的蒙日圆方程为 C、若点是椭圆的蒙日圆上的动点,过点作椭圆的两条切线 , 分别交蒙日圆于两点,则的长恒为4 D、记点到直线的距离为 , 则的最小值为
-
15、若 , , 则( )A、 B、 C、 D、
-
16、如图,在平行六面体中,分别是的中点,以为顶点的三条棱长都是 , 则下列说法正确的是( )A、平面 B、平面 C、 D、与夹角的余弦值为
-
17、已知函数的定义域为为的导函数.若 , 且在上恒成立,则不等式的解集为( )A、 B、 C、 D、
-
18、如图,平面四边形中, , .若是椭圆和双曲线的两个公共焦点,是与的两个交点,则与的离心率之积为( )A、 B、 C、2 D、3
-
19、已知 , 则的值是( )A、9 B、7 C、9或 D、8
-
20、若 , 则的值为( )A、83 B、119 C、164 D、219