相关试卷

  • 1、如图,正三棱柱ABCA1B1C1的所有棱长都为2,DCC1中点.

    (1)、求证:AB1平面A1BD
    (2)、求平面A1ACC1与面A1BD所成角的余弦值.
  • 2、已知函数f(x)=ax2+1 , (a>0),g(x)=x3+bx

    (1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值

    (2)当a=3,b=9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围

  • 3、设[x]表示不超x的最大整数(如[2]=2,54=1).对于给定的nN , 定义Cnx=n(n1)(n[x]+1)x(x1)(x[x]+1),x[1,+) , 则C832=;当x[2,3)时,函数C8x的值域是
  • 4、函数fx=ax2+bx+c , 若a,b,c成等比数列且f0=4 , 则fx值域为.
  • 5、已知向量a,b,c在正方形网格中的位置如图所示,若网格纸上小正方形的边长为1,则(a+b)c=

  • 6、曲线C是平面内与三个定点F11,0,F21,0F30,1的距离的和等于22的点的轨迹,PC上一点,则(       )
    A、曲线C关于x轴对称 B、存在点P,使得PF3=2 C、F1PF2面积的最大值是1 D、存在点P , 使得F1PF2为钝角
  • 7、已知等差数列an与等比数列bn的前n项和分别为Sn,Tn , 则下列结论中正确的是(       )
    A、数列2an是等比数列 B、Tn可能为2n1 C、数列Snn1是等差数列 D、数列bn2是等比数列
  • 8、有一组样本数据x1x2 , …,xn , 由这组数据得到新样本数据y1y2 , …,yn , 其中yi=xi+c(i=1,2,,n),c为非零常数,则(       )
    A、两组样本数据的样本平均数相同 B、两组样本数据的样本中位数相同 C、两组样本数据的样本标准差相同 D、两组样本数据的样本极差相同
  • 9、有四张卡片,每张卡片的一面上写着英文字母,则另外一面上写着数字.现在规定:当牌的一面写着数字7时,另外一面必须写着字母H.你的任务是:为了检验下面4张卡牌是否有违反规定的写法,你需要翻看哪些牌?(       )

    A、①② B、②③ C、②④ D、④③
  • 10、设10≤x1<x2<x3<x4≤104 , x5=105 , 随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值x1+x22x2+x32x3+x42x4+x52x5+x12的概率也均为0.2,若记Dξ1Dξ2分别为ξ1ξ2的方差,则(  )
    A、Dξ1>Dξ2 B、Dξ1=Dξ2 C、Dξ1<Dξ2 D、Dξ1Dξ2的大小关系与x1、x2、x3、x4的取值有关
  • 11、已知 a,bR , 且a>b , 则(       )
    A、a2>b2 B、ba<1 C、lgab>0 D、12a<12b
  • 12、已知空间向量m,n满足mn=1,2,3,m+n=0,2,1 , 则|m|2|n|2=(       )
    A、2 B、1 C、0 D、1
  • 13、函数fx=3tan2x7的最小正周期为(       )
    A、π4 B、π2 C、π D、2π
  • 14、把函数y=lnx+1的图象按向量m=2,0平移,得到y=fx的图象,则fx=(       )
    A、lnx1 B、lnx+3 C、lnx+1+2 D、lnx+12
  • 15、若集合A=1,0,1,2,3,4,B=y|y=x21,xA , 则AB=(       )
    A、1,0,2 B、0,1,3 C、1,0,3 D、0,1,2
  • 16、如图,在平行六面体ABCDA1B1C1D1中,AB=2AD1=2BC=CC1=1CC1CDADC=120°ECD中点,F在线段BC上(包含端点),则下列说法正确的是(     )

    A、存在点F , 使得A1F//平面AD1E B、存在点F , 使得平面AD1E平面D1EF C、不存在点F , 使得D1F+EF=10 D、不存在点F , 使得四棱锥FCDD1C1有内切球
  • 17、对于一个给定的数列an , 令bn=an+an+1 , 则数列bn称为数列an的一阶和数列,再令cn=bn+bn+1 , 则数列cn是数列an的二阶和数列,以此类推,可得数列anp阶和数列.
    (1)、若an的二阶和数列是等比数列,且a1=0a2=1a3=0a4=3 , 求a7
    (2)、若an=2n , 求an的二阶和数列的前n项和;
    (3)、若an是首项为1的等差数列,bnan的一阶和数列,且3ak12bk1k2a1+a2++ak=1000 , 求正整数k的最大值,以及k取最大值时an的公差.
  • 18、已知函数fx=x1ex12x2+1gx=sinxax , 其中aR
    (1)、当a=1时,求曲线y=gx在点π,gπ处切线的方程;
    (2)、求函数fx的零点;
    (3)、用maxm,n表示mn的最大值,记Fx=maxfx,gx . 问:是否存在实数a , 使得对任意xRFx0恒成立?若存在,求a的取值范围;若不存在,请说明理由.
  • 19、已知点A2,0,B2,0皆为曲线C上点,P为曲线C上异于A,B的任意一点,且满足直线PA的斜率与直线PB的斜率之积为34.
    (1)、求曲线C的方程;
    (2)、若曲线C的右焦点为F , 过M4,0的直线l与曲线C交于D,E , 求证:直线FD与直线FE斜率之和为定值.
  • 20、在春节联欢晚会上进行了机器人团体舞蹈表演,某机构随机抽取了100名观众进行问卷调查,得到了如下数据:

    喜欢

    不喜欢

    男性

    40

    10

    女性

    20

    30

    (1)、依据α=0.001的独立性检验,试分析对机器人表演节目的喜欢是否与性别有关联?
    (2)、从这100名样本观众中任选1名,设事件A=“选到的观众是男性”,事件B=“选到的观众喜欢机器人团体舞蹈表演节目”,比较PBAPBA¯的大小,并解释其意义.

    χ2=nadbc2a+bc+da+cb+dn=a+b+c+d.

    α

    0.050

    0.010

    0.001

    xα

    3.841

    6.635

    10.828

上一页 14 15 16 17 18 下一页 跳转