• 1、设函数y=sin2x+φ0<φ<π2)的图象与直线y=t相交的连续的三个公共点从左到右依次记为ABC , 若BC=2AB , 则正实数t的值为.
  • 2、我们知道,函数y=fx的图象关于y轴成轴对称图形的充要条件是函数y=fx为偶函数,有同学发现可以将其推广为:函数y=fx的图象关于x=a成轴对称图形的充要条件是函数y=fx+a为偶函数.
    (1)、已知函数φx=x22x+aex1+ex+1 , 求该函数图象的对称轴方程;
    (2)、若函数gx的图象关于直线x=1对称,且当x1时,gx=x21x.

    ①求gx的解析式;

    ②求不等式gx>g3x1的解集.

  • 3、某公司研发了一款新型的洗衣液,其具有“强力去渍、快速去污”的效果.研发人员通过多次试验发现每投放a1a4,aR克洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=afx , 其中fx=2x,0x46x3+2,x>4 , 且当水中洗衣液的浓度不低于16克/升时,才能够起到有效去污的作用.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.
    (1)、若一次投放4克的洗衣液,则有效去污时间可达几分钟?
    (2)、如果第一次投放4克洗衣液,4分钟后再投放4克洗衣液,写出第二次投放之后洗衣液在水中释放的浓度y(克/升)与时间x(分钟)的函数关系式,其中x表示第一次投放的时长,并判断接下来的4分钟是否能够持续有效去污.
  • 4、已知f(x)是定义在区间[1,1]上的奇函数,且f(1)=1 , 若a,b[1,1]a+b0时,有f(a)+f(b)a+b>0.

    (1)判断函数f(x)[1,1]上是增函数,还是减函数,并证明你的结论;

    (2)若f(x)m25mt5对所有x[1,1]t[1,1]恒成立,求实数m的取值范围.

  • 5、已知函数fx=x22axa1aR.
    (1)、当a=1时,解不等式fx6
    (2)、若x00,2 , 使得fx0>0 , 求实数a的取值范围.
  • 6、已知函数fx=4x14x+1.
    (1)、判断fx的奇偶性并证明;
    (2)、解不等式log2fx1.
  • 7、已知函数fx=kx+7,x<2ax23,2x<32x+12,x3 , 其中ff8=5f1=2.
    (1)、求函数fx的解析式;
    (2)、已知方程fx=1的解集.
  • 8、已知函数f(x)=x2+2x,x0x22x,x<0 , 若关于x的不等式fx2+afx<0恰有1个整数解,则实数a的最大值是
  • 9、已知函数f(x)是定义域为(,0)(0,+)的奇函数,且f(2)=0 , 若对任意的x1,x2(0,+) , 且x1x2 , 都有x1f(x1)x2f(x2)x1x2<0成立,则不等式f(x)<0的解集为
  • 10、已知函数f(x)=x2+2x+ax , 若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是
  • 11、计算:32227823+2log23+lg14lg25=.
  • 12、已知连续函数f(x)满足:①x,yR , 则有fx+y=fx+fy1 , ②当x>0时,f(x)<1 , ③f(1)=2 , 则以下说法中正确的是(  )
    A、f0=1 B、f4x=4fx4 C、f(x)3,3上的最大值是10 D、不等式f3x22fx>f3x+4的解集为x|23<x<1
  • 13、德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”y=f(x)=1,xQ0,xRQ其中R为实数集,Q为有理数集.则关于函数f(x)有如下四个命题,正确的为(       )
    A、对任意xR , 都有fx+fx=0 B、对任意x1R , 都存在x2Qfx1+x2=fx1 C、a<0b>1 , 则有xf(x)>a=xf(x)<b D、存在三个点Ax1,fx1Bx2,fx2Cx3,fx3 , 使ABC为等腰直角三角形
  • 14、下列叙述正确的是(       )
    A、x>0时,x+1x2 B、x>4时,x+4x1的最小值是5 C、函数y=2+x+1x(x<0)的最大值是0 D、函数y=x+ax在区间3,+上单调递增,则a的取值范围是,9
  • 15、下列函数既是偶函数,又在区间,0上是减函数的是(       )
    A、y=x15 B、y=3x C、y=lgx2+1 D、y=x1x
  • 16、函数fx=loga2x3+1a>0a1)的图象恒过定点Am,n , 若对任意正数xy都有mx+ny=4 , 则1x+1+2y的最小值是(       )
    A、2 B、3922 C、1 D、43
  • 17、已知fx是奇函数,gx是偶函数,且fx+gx=exex2+2x23 , 则不等式f32x>fx+2的解集是(       )
    A、,13 B、13,+ C、,135,+ D、13,5
  • 18、如图,点O为坐标原点,点A(1,1) , 若函数y=ax(a>0,a1)y=logbx的图象与线段OA分别交于点MN , 且MN恰好是线段OA的两个三等分点,则ab满足.

    A、a<b<1 B、b<a<1 C、b>a>1 D、a>b>1
  • 19、“函数fx=log123ax在区间1,2上单调递增”的充分必要条件是(       )
    A、a0,+ B、a0,1 C、a0,32 D、a0,32
  • 20、集合A=xy=ln5xB=yy=2x , 则ARB=(       )
    A、x,yx<5y0 B、,0 C、,0 D、0,5
上一页 1025 1026 1027 1028 1029 下一页 跳转