-
1、下面几何体中为圆锥的是( )A、
B、
C、
D、
-
2、中国是最早使用正、负数表示具有相反意义的量的国家.如果水位下降记作 , 那么水位上升记作( )A、 B、 C、 D、
-
3、 如图,正方形ABCD中,已知 , 对角线AC与BD交于点O,点E为射线OB上的一个动点(不与点B重合),点M为线段ED的中点.现将线段OM绕点M顺时针旋转90°得到线段MF,连结AE,EF,AF,OF.(1)、若点M在线段OD上且MD=4,求线段OF及EF的长.(2)、当点E在线段OB上运动时,请判断△AEF的形状,并说明理由.(3)、在点E的运动过程中,当AE=2OF时,求线段BE的长.
-
4、 根据以下素材,探索完成任务.
智能农业种植基地设计
背景
随着科技的日益更新,利用智能化设备和技术,可以有效提高农业种植的生产效率,提升农产品的质量.
素材1
如图,某智能农业种植基地计划搭建一座矩形温室大棚用于高效种植作物.已知大棚的种植面积为1200平方米,且矩形的长AD比宽AB多10米.
素材2
基地想在矩形中心引入智能光照控制系统P(视为一个点),当系统P到矩形内任意一点(包括边上)的距离不超过28米时视为达标,以确保光照均匀覆盖;否则视为不达标并需要重新改进系统.
素材3
为了更智能地对农作物浇水,在基地内部安装了一个矩形智能灌注设备,要求设备四周预留相同宽度的空间,已知该矩形灌注设备的面积为24平方米.
⑴任务1
设矩形大棚的宽为x米,则长为 ▲ 米,根据素材1的信息可列方程: ▲ .
⑵任务2
根据素材2的要求,请问:该设计是否达标?如果达标,请说明理由;如果不达标,请给出改进方案.
⑶任务3
设素材3中灌注设备四周预留的宽度为a米,求a的值.
-
5、 如图,已知点A为反比例函数图象上的一点,过点A作AB⊥y轴交y轴于点B且OB=4,连结OA.(1)、求点A的坐标.(2)、将△ABO沿x轴正方向平移得到△A'B'O' , 记线段A'O'的中点为C,若反比例函数的图象恰好经过点B'和点C,求k的值.
-
6、 浙江新能源汽车数量不断上升,据相关信息,2025年全省将建成公共充电桩超230万个.某小区为优化公共充电桩管理,随机记录了某日50辆新能源汽车的充电情况.
时间段
6点﹣10点
10点﹣14点
14点﹣18点
18点﹣22点
22点﹣6点
数量(辆)
4
20
a
10
12
价格(元/度)
1.15
0.60
1.20
0.90
0.55
(1)、填空:a= .(2)、本次调查的50辆新能源汽车用电价格的众数为 元/度,中位数为 元/度.(3)、若该地区每天需要充电的新能源汽车数量约为10万辆,请估计在6点至10点时间段内进行充电的新能源汽车数量. -
7、 如图,已知四边形ABCD为平行四边形,过点A作AE⊥BD交BD于点E,过点C作CF⊥BD交BD于点F.(1)、求证:AE=CF.(2)、若∠ABD=30°,AB=4,BC=6,求EF的长.
-
8、 解方程:(1)、3x2=x;(2)、2x2﹣3x﹣5=0.
-
9、 在平面直角坐标系中,反比例函数y1和y2(x>0,a>0,b>0)的图象如图所示.已知矩形OABC的边OA,OC分别在x轴正半轴和y轴正半轴上,y1分别交BC,AB于点D,E,y2分别交BC,AB于点F,G,直线FG与y轴交于点P,连结PD.若AB=a,OA=b,则△PFD的面积为 .
-
10、 如图,矩形ABCD的对角线AC,BD交于点O,AB=6,点E为BC边上一点,连结AE,将△ABE沿AE翻折,使点B恰好与点O重合,则BE的长为 .
-
11、 若平行四边形的两邻边长分别4和5,两条较短边之间的距离为3,则两条较长边之间的距离为 .
-
12、 已知关于x的一元二次方程x2﹣2mx+3m=0的一个根为2,则m的值为 .
-
13、 当a=﹣1时,二次根式的值为 .
-
14、 如图,已知菱形ABCD的边长为 , ∠ABC=80°,延长BC至点E,射线CF在∠DCE的内部且满足∠DCF=50°,过点D作DG⊥CF交CF于点G,过点G作GH⊥CE交CE于点H.若GH=1,则线段BD的长为( )A、 B、 C、 D、
-
15、 已知反比例函数的图象上有A(n,y1),B(n﹣2,y2)两点,则下列说法正确的是( )A、若n<0,则y1<y2 B、若0<n<1,则y1>y2 C、若n>2,则y1>y2 D、若1<n<2,则y1>y2
-
16、 如图,已知点O是▱ABCD两条对角线AC,BD的交点,BD=20,AO=8,AD=15,则△OBC的周长为( )A、29 B、33 C、34 D、43
-
17、 据相关统计,2022年中国新能源汽车销售量约688万辆,2024年中国新能源汽车销售量约1286万辆.设从2022年至2024年的年平均增长率为x,则所列方程正确的是( )A、688(1+x)2=1286 B、688(1﹣x)2=1286 C、1286(1+x)2=688 D、1286(1﹣x)2=688
-
18、 用反证法证明“在△ABC中,若AB=AC,则∠B<90°”时,应先假设( )A、∠B>90° B、∠B≤90° C、∠B≥90° D、∠B≠90°
-
19、 在二次根式中,字母x的取值范围是( )A、x≥0 B、x≤0 C、x≥﹣1 D、x≤﹣1
-
20、如图,在正方形中,点E是边上的动点,连接 , 作于点F,在边上取点G,使得 , 连接 .(1)、求证:;(2)、求证:;(3)、已知 , 点E在运动过程中,是否为定值?若是,求出该值;若不是,请说明理由.