• 1、如图是碰球游戏的示意图,在水平桌面上固定一个内壁光滑的半径为R的管形圆轨道,a、b、c为圆上三个点,且构成等边三角形。在内部放置质量分别为m和2m的A、B两个发光弹力球(球径略小于管径,管径远小于R),开始时B球静止于a点,A球以一定的初速度向右与B球发生弹性碰撞,已知两球只有碰撞时才发光,则第二次发光点在(  )

    A、b、c之间 B、b点 C、c点 D、a、b之间
  • 2、如图所示,在墙内或天花板中埋有某根通有恒定电流长直导线。为探测该导线走向,现用一个与灵敏电流计(图中未画出)串联的感应线圈进行探测,结果如下表。忽略地磁场影响,该导线可能的走向是(  )

    探测

    电流计有无示数

    线圈平面平行于天花板OABC

    沿OA方向平移

    沿OC方向平移

    线圈平面平行于墙面OADE

    沿OA方向平移

    沿OE方向平移

    A、OE方向 B、OC方向 C、OB方向 D、OA方向
  • 3、如图所示,桌面中心固定在一个弹簧上方,弹簧固定在水平面的固定木桩上,某铜柱放在桌面中央,现用力向下压铜柱,铜柱与桌面向下移动一定距离后静止释放。弹簧始终在弹性限度内,则桌面从最低点向上振动过程中且铜柱脱离桌面前(  )

    A、桌面对铜柱做正功 B、铜柱速度越来越大 C、铜柱加速度越来越大 D、铜柱、桌面和弹簧系统的机械能越来越小
  • 4、如图所示,a、b、c、d分别表示氢原子在不同能级间的四种跃迁,辐射光子频率最大的是(     )

    A、a B、b C、c D、d
  • 5、如图所示,水平面内足够长的两光滑平行金属直导轨,左侧有电动势E=36V的直流电源、C=0.1F的电容器和R=0.05Ω的定值电阻组成的图示电路。右端和两半径r=0.8m的竖直面内14光滑圆弧轨道在PQ处平滑连接,PQ与直导轨垂直,PQ左侧空间存在竖直向上,大小为B=1T的匀强磁场。将质量为m1=0.3kg电阻为R0=0.1Ω的金属棒M静置在水平直导轨上,图中棒长和导轨间距均为L=1mMR足够远,金属导轨电阻不计。开始时,单刀双掷开关S2断开,闭合开关S1 , 使电容器完全充电;然后断开S1 , 同时S2接“1”,M从静止开始加速运动直至速度稳定;当M匀速运动到与PQ距离为d=0.405m时(速度已经稳定),立即将S2接“2”,并择机释放另一静置于圆弧轨道最高点、质量为m2=0.1kg的绝缘棒NMN恰好在PQ处发生第1次弹性碰撞。已知之后NM每次碰撞前M均已静止,所有碰撞均为弹性碰撞,且碰撞时间极短,MN始终与导轨垂直且接触良好,重力加速度g=10m/s2 , 求:

    (1)、电容器完成充电时的电荷量q
    (2)、M稳定时的速度;
    (3)、自发生第1次碰撞后到最终两棒都静止,金属棒M的总位移。
  • 6、如图所示的装置放在水平地面上,该装置由弧形轨道、竖直圆轨道、水平直轨道AB和倾角θ=37°的斜轨道BC平滑连接而成。将质量m=0.2kg的小滑块从弧形轨道离地高H=2.0m的M处静止释放。已知滑块与轨道AB和BC间的动摩擦因数均为μ=0.25,弧形轨道和圆轨道均可视为光滑,忽略空气阻力,取g=10m/s2 , sin37°=0.6,cos37°=0.8。求:

    (1)、小滑块运动到A点时的速度大小;
    (2)、若滑块运动到D点时对轨道的压力大小为6N,求竖直圆轨道的半径;
    (3)、若LAB=LBC=2.0m,试确定滑块最终停止的位置。
  • 7、得知某企业的一个特殊车间需要环境温度的监控,小伟同学制作了一个简易的环境温度监控器,如图所示,汽缸导热,缸内温度与环境温度可以认为相等,达到监控的效果。汽缸内有一质量不计、横截面积,S=10cm2的活塞封闭着一定质量理想气体,活塞上方用轻绳悬挂着矩形重物m,若轻绳拉力刚好为零,警报器即开始报警。当缸内温度为T1=300K时,活塞与缸底相距H=5cm , 与重物相距h=3cm。环境空气压强p0=1.0×105Pa , 重力加速度大小g=10m/s2 , 不计活塞厚度及活塞与缸壁间的摩擦。

    (1)、当活塞刚好接触重物时,求缸内气体的温度T2
    (2)、某时刻警报器开始报警,若重物质量为m=1kg , 求此时缸内气体温度T3
  • 8、某探究小组要测量电池的电动势和内阻。可利用的器材有:电压表、电阻丝、定值电阻(阻值为R0)、金属夹、刻度尺、开关S、导线若干。他们设计了如图所示的实验电路图。

    (1)、实验步骤如下:

    ①将电阻丝拉直固定,按照图(a)连接电路,金属夹置于电阻丝的A端;

    ②闭合开关S,快速滑动金属夹至适当位置并记录电压表示数U,断开开关S,记录金属夹与B端的距离L;

    ③多次重复步骤②,根据记录的若干组UL的值,为了减小误差利用线性图像来测量电池的电动势和内阻,若以1U为纵坐标,则应以(选填“L”或“1L”)为横坐标作图,探究小组得到图(c)中图线I。

    ④按照图(b)将定值电阻接入电路,多次重复步骤②,再根据记录的若干组U、L的值,作出图(c)中图线II。

    (2)、由图线得出纵轴截距为b,则待测电池的电动势E=
    (3)、由图线求得I、II的斜率分别为k1、k2 , 则待测电池的内阻r=(用k1、k2和R0表示)。
    (4)、探究小组想要继续测定电阻丝的电阻率,用螺旋测微器测量出电阻丝的直径,记为D,则电阻丝的电阻率ρ=(用b、k1、k2和R0和D表示)。
  • 9、某实验小组做“用单摆测量重力加速度”的实验。所用实验器材有:带孔小钢球一个、长度可调的轻质摆线、铁架台、刻度尺、停表、10分度的游标卡尺等。实验装置如图甲所示。实验时,将摆球拉起较小角度后释放,使之做简谐运动,利用停表测出摆球摆动的周期。

    (1)、组装好装置后,用毫米刻度尺测量摆线长度L,用游标卡尺测量小钢球直径d。小钢球直径d=mm,记摆长l=L+d2
    (2)、进行实验时,用停表测量周期,应从摆球摆至时开始计时(选填“最高点”或“最低点”),记下小球作50次全振动的时间。
    (3)、如果该实验小组为我市某高中学校的学生,在学校的实验室做了该实验。测得摆线长度L=97.87cm , 单摆作50次全振动的时间为100.0s,利用以上数据结合实验原理可算出抚州的重力加速度为m/s2。(结果保留三位有效数字,π2取9.87)
  • 10、一列简谐横波沿x轴正方向传播,t=0时刻的波形如图甲所示,A、B、P是介质中的3个质点,t=0时刻波刚好传播B点。质点A的振动图像如图乙所示,下列说法正确的是(  )

    A、波源的起振方向沿y轴正方向 B、该波的传播速度是2.5m/s C、t=0.1s时,质点A的位移为2cm D、从t=0到t=1.6s,质点A通过的路程为16cm
  • 11、如图所示,有一矩形线圈的面积为S,匝数为N,电阻不计,绕OO'轴在水平方向的磁感应强度为B的匀强磁场中以角速度ω匀速转动,从图示线圈平面与磁感线平行的位置开始计时。矩形线圈通过铜滑环接理想变压器原线圈,副线圈接有固定电阻R0和滑动变阻器R,所有电表均为理想交流电表,下列判断正确的是(  )

    A、滑动变阻器的滑片向下滑动过程中,电压表V2示数不变,V3的示数变小 B、滑动变阻器的滑片向下滑动过程中,电流表A2示数变大,A1示数变小 C、矩形线圈产生的感应电动势的瞬时值表达式为e=NBSωsinωt D、线圈处于图示位置时,电压表V1和电流表A1的示数均达到最大值
  • 12、如图(a),在光滑绝缘水平桌面内建立直角坐标系Oxy,空间内存在与桌面垂直的匀强磁场。一质量为m、带电量为q的小球在桌面内做圆周运动。平行光沿x轴正方向照射,垂直光照方向放置的接收器记录小球不同时刻的投影位置。投影坐标y随时间t的变化曲线如图(b)所示,则(  )

    A、磁感应强度大小为2πm3qt0 B、投影的速度最大值为4πy03t0 C、2t03t0时间内,投影做匀速直线运动 D、3t04t0时间内,投影的位移大小为y0
  • 13、质子11H , 氘核12Hα粒子24He由同一位置从静止先通过同一加速电场后,又垂直于匀强电场方向进入同一偏转电场,最后穿出偏转电场。已知加速电压为U1 , 偏转电压为U2 , 偏转电极间的距离为d , 偏转电极板的长度为l , 离开偏转电场时粒子的偏转角为θ , 则(  )
    A、若仅增大U1可使θ增大 B、若仅增大d可使θ增大 C、若仅增大l可使θ减小 D、三种粒子离开偏转电场时θ相同
  • 14、从离地高为h处水平抛出一个质量为m的小球,小球从抛出点到落地点的位移大小为5h , 重力加速度为g,不计空气阻力,则(  )
    A、小球抛出的初速度大小为gh B、小球落地前瞬间的速度大小为5gh C、小球在空中运动的过程,动能的变化量为mgh D、小球在空中运动的过程,重力的冲量大小为mgh
  • 15、铯137属于中毒性核素,具有放射性,铯137的半衰期约为30年,能够在环境中滞留较长时间,在环境介质中长期存在并在生态系统各介质中循环,还会通过食物链进入人体,危害人类健康。在核电站发生核事故后,附近可检测出放射性元素铯137,假设现有一条海鱼体内有5.0×10-8g的铯137,若铯137在今后未被代谢出体外,则15年后残留在其体内的铯137约为(  )
    A、2.5×10-8g B、3.0×10-8g C、3.5×10-8g D、4.0×10-8g
  • 16、如图甲所示,两根平行、光滑且足够长金属导轨固定在倾角为θ=30°的斜面上,其间距L=2m。导轨间存在垂直于斜面向上的匀强磁场,磁感应强度为B=2T。两根金属棒NQ、ab与导轨始终保持垂直且接触良好,NQ棒在轨道最低位置,与两轨道最低点的两个压力传感器接触(两压力传感器完全一样,连接前,传感器已校零)。已知ab棒的质量为2kg,NQ棒和ab棒接入电路的电阻均为2Ω,导轨电阻不计。t=0时,对ab棒施加平行于导轨的外力F,使ab棒从静止开始向上运动,其中一个压力传感器测量的NQ棒的压力为FN , 作出力FN随时间t的变化图像如图乙所示(力FN大小没有超出压力传感器量程),重力加速度g取10m/s2。求:

    (1)、金属棒NQ的质量M;
    (2)、t1=1s时,外力F的大小;
    (3)、已知在t2=2s时,撤去外力F,ab棒又经过0.4s速度减为0,此时ab棒离出发点的距离。
  • 17、竖直平面内水平虚线上方有方向水平向左的匀强电场。虚线下方高度为H的区域内有方向垂直于纸面向里的匀强磁场和方向竖直向上的匀强电场,虚线上、下方的电场强度大小相等。将质量为m、电荷量为+q的小球从a以初速度v0竖直向上抛出,小球的运动轨迹如图所示,a、c两点在虚线上,b点为轨迹的最高点。小球从c点进入虚线下方区域做匀速圆周运动且恰好不出下边界。不计空气阻力,重力加速度为g。求:

    (1)、小球运动到c点时的速度大小;
    (2)、匀强磁场的磁感应强度B的大小。
  • 18、洗车所用的喷水壶的构造如图所示,水壶的容积为V,洗车前向壶内加入23V的洗涤剂并密封,然后用打气筒打气10次后开始喷水,若壶内气体压强小于P0 , 则洗涤剂不能从壶中喷出。已知外部大气压强恒为P0 , 打气筒每次打入压强为P0、体积为130V的空气,空气可视为理想气体,不计细管内液体的体积及压强,打气及喷水过程中封闭空气的温度始终不变。求:

    (1)、打气10次后,喷水壶内封闭空气的压强p;
    (2)、喷水壶内洗涤剂能否全部从喷口喷出?若不能,最少还能剩余多少?
  • 19、某同学欲用下列器材测量电源的电动势E与内阻r。

    A.待测电源(电动势E约为9V,内阻r未知)

    B.电流表A(量程0.6A,内阻RA未知)

    C.电阻箱R(0~999.9Ω)

    D.定值电阻R1=25Ω

    E.定值电阻R2=15Ω

    F.单刀单掷开关S1单刀三掷开关S2 , 导线若干该同学按图甲所示的电路连接器材。

    (1)、该同学采用“电桥法”测量电流表的内阻RA。闭合开关S1 , 将开关S2先后掷向a和b,并调节电阻箱,反复操作后发现当R=375.0Ω , 将开关S2掷向a和b时,电流表示数相同,则电流表的内阻RA=Ω。(结果保留1位小数)
    (2)、该同学再利用图甲电路测量电源的电动势和内阻。将开关S2掷向触点c,闭合开关S1 , 多次调节电阻箱,记录下电阻箱的阻值R和电流表的示数I;利用R、I数据绘制1I1R图像如图乙所示,则电源的电动势。E=V,内阻r=Ω(结果均保留两位有效数字)。

    (3)、利用该实验电路测出电动势和内阻的测量值和真实值相比:EErr(选填“>”、“<”或“=”)。
    (4)、现有两个相同规格的小灯泡L1L2 , 此种灯泡的IU特性曲线如图丙所示,将它们并联后与一电源E'=2.0V,r'=0.5Ω和定值电阻R0=2Ω串联,如图丁所示,则灯泡L1的实际功率为W。(结果保留一位有效数字)

  • 20、在某次探究加速度与力、质量的关系的实验中,某同学设计了如图甲所示的实验装置,小车总质量为M,重物质量为m.

    (1)、用此装置探究实验的过程中,(选填“需要”或“不需要”)平衡摩擦力,(选填“需要”或“不需要”)满足所挂重物质量m远小于小车的总质量M.
    (2)、图乙是某次实验中通过正确的操作得到的一条纸带,图中0、1、2……为连续的几个计数点,两计数点间还有四个点迹没有画出。已知打点计时器使用的是频率为50Hz的交流电,小车运动的加速度大小a=m/s2。(结果保留三位有效数字)

    (3)、若以弹簧测力计的示数F为横坐标,小车的加速度大小a为纵坐标,画出的aF图像是一条过原点的直线,如图丙所示。已知图线与横轴的夹角为θ , 图线的斜率为k,则小车质量M的表达式为______。

    A、k B、2k C、2tanθ D、1tanθ
上一页 10 11 12 13 14 下一页 跳转