-
1、如图所示,电阻不计的金属导轨和平行等高正对放置,导轨左右两侧相互垂直,左侧两导轨粗糙,右侧两导轨光滑且与水平面的夹角 , 两组导轨均足够长。整个空间存在平行于左侧导轨的匀强磁场。导体棒Q在外力作用下静置于左侧导轨上并保持水平,其与导轨间的动摩擦因数。导体棒P水平放置于右侧导轨上,两导体棒的质量均为m,电阻相等。时起,对导体棒P施加沿斜面向下的随时间变化的拉力(k已知),使其由静止开始做匀加速直线运动,同时撤去对Q的外力,导体棒Q开始沿轨道下滑。已知两导体棒与导轨始终垂直且接触良好,重力加速度为g,最大静摩擦力等于滑动摩擦力。( , )(1)、求导体棒P的加速度;(2)、求时导体棒Q加速度的大小;(3)、求导体棒Q最大速度的大小。
-
2、图甲为我国某电动轿车的空气减震器(由活塞、足够长汽缸组成,活塞底部固定在车轴上)。该电动轿车共有4个完全相同的空气减震器,图乙是空气减震器的简化模型结构图,导热良好的直立圆筒形汽缸内用横截面积的活塞封闭一定质量的理想气体,活塞能无摩擦滑动,并通过连杆与车轮轴连接。封闭气体初始温度、长度、压强 , 重力加速度g取。(1)、为升高汽车底盘离地间隙,通过气泵向汽缸内充气,让汽缸缓慢上升 , 此过程中气体温度保持不变,求需向一个汽缸内充入与缸内气体温度相同、压强的气体的体积;(2)、在(1)问情况下,当车辆载重时,相当于在汽缸顶部加一物体A,汽缸下降,稳定时汽缸内气体长度变为 , 气体温度变为 , 若该过程中气体放出热量 , 气体压强随气体长度变化的关系如图丙所示,求该过程中一个汽缸气体内能的变化量。
-
3、兴趣小组利用如下装置验证“加速度与力和质量的关系”的实验。
第一小组:验证加速度与力的关系器材包含:导轨上有刻度尺的气垫导轨(含气泵)、光电门B、数字计时器、带挡光片的滑块A、钩码若干、力的传感器(质量不计)和天平。
实验步骤:固定好光电门B,调整导轨水平,用刻度尺测出遮光条与光电门之间的距离L及挡光片的宽度d,并记录滑块的位置,测出滑块和挡光片的总质量为M。滑块用平行于导轨的细线跨过动滑轮连接在传感器上。在传感器上悬挂一个钩码,由静止释放滑块,记录滑块经过光电门的时间为,读出传感器的示数F,保持小车的质量不变,改变钩码的个数且从同一位置释放,进行多次实验,并作出图像。
根据实验步骤回答下列问题:
(1)、不挂钩码和细线,接通气泵,在任意位置轻放滑块,观察到滑块 , 兴趣小组判断调整后的导轨已经水平。(2)、为了直观的由图像看出物体的加速度与合力F的正比关系,小组应该绘制图像(选填“”“”“”或“”)。第二小组:验证加速度与质量的关系
兴趣小组与邻桌的同学一起做验证“加速度与质量关系”的实验。他们将两个气垫导轨对称地放置在一条水平直线上,保持两个导轨上的光电门固定在相同刻度处(即保持滑块的位移相同),测出A和B两个滑块的质量为M1与M2 , 滑块上连接一条平行于桌面的细线,细线中间放置用一个悬挂钩码的滑轮,并使细线与导轨平行且跨过气垫导轨上的滑轮。现同时从各自的气垫导轨上同一位置由静止释放,记录A和B两个滑块上遮光片(两遮光片宽度相同)分别通过光电门的时间为t1和t2。
(3)、若测量结果满足(用上述字母表示),即可得出物体加速度与质量的关系。 -
4、2024年1月,国务院国资委启动实施未来产业启航行动,明确可控核聚变领域为未来能源的唯一方向。可控核聚变当中,有一重要技术难题,就是如何将运动电荷束缚在某一固定区域。有一种利用电场和磁场组合的方案,其简化原理如下。如图,已知直线l上方存在方向竖直向下的匀强电场,直线l下方存在方向垂直纸面向外的匀强磁场。一个带正电的、不计重力的粒子从电磁场边界l上方一点,以一定速度水平向右发射,经过一段时间又回到该发射点。则改变下列条件能使粒子发射后回到原来位置的是( )。A、仅带电粒子比荷发生变化(但仍为带正电的粒子) B、仅带电粒子初速度发生变化 C、电场强度变成原来3倍且磁感应强度变成原来2倍 D、仅发射点到电场边界l的距离发生变化
-
5、如图所示,竖直平面内存在无限大、均匀带电的空间离子层,左侧为正电荷离子层,右侧为负电荷离子层,两离子层内单位体积的电荷量均为 , 厚度均为d。以正离子层左边缘上某点O为坐标原点,水平向右为正方向建立坐标轴。已知正离子层中各点的电场强度方向均沿x轴正方向,其大小E随x的变化关系如图所示;在与空间内电场强度均为零。某放射性粒子源S位于的位置,入射电子速度方向与x轴正方向的夹角为时,电子刚好可以到达离子层分界面处,没有射入负电荷离子层。已知电子质量为m,所带电荷量为e,其中 , 不计电子重力及电子间相互作用力,假设电子与离子不发生碰撞。下列说法正确的是( )。A、电子在离子层中做匀变速曲线运动 B、电子将从正离子层左侧边界离开 C、电子从进入离子层到离子层分界面过程电势能增加 D、刚好可以到达离子层分界面处的电子入射时满足
-
6、如图甲所示,在理想变压器a、b端输入电压为的正弦交流电,原副线圈匝数比。定值电阻、、的阻值分别为 , , , 滑动变阻器R的最大阻值为。初始时滑动变阻器滑片位于最左端,向右缓慢移动滑片至最右端过程中,记录理想电压表V的示数U与理想电流表A的示数I,描绘出如图乙所示的图像。下列说法正确的是( )。A、通过的电流先增大后减小 B、电压表示数先增大后减小 C、图像中纵截距 , 斜率绝对值为 D、消耗功率变大
-
7、乒乓球是一种世界流行的球类体育项目,如图所示,装满乒乓球的纸箱沿着倾角为的粗糙斜面下滑,在箱子正中央夹有一个质量为m的乒乓球,下列说法正确的是( )。A、若纸箱向下做匀速直线运动,周围的乒乓球对该乒乓球的作用力不可能为 B、若纸箱向下做匀速直线运动,周围的乒乓球对该乒乓球的作用力可能为 C、若纸箱向下做加速运动,周围的乒乓球对该乒乓球的作用力可能为 D、若纸箱向下做加速运动,周围的乒乓球对该乒乓球的作用力可能为
-
8、在水平光滑绝缘桌面上,放置一个半径为R的超导导线环,其中通过的电流为I。穿过导线环垂直桌面向下有一个匀强磁场,导线环全部位于磁场中,磁感应强度为B,则导线环各截面间的张力为( )。A、 B、 C、0 D、
-
9、光屏竖直放置,直线与光屏垂直,用激光笔沿与方向成角的方向照射光屏,光屏上C处有激光亮点。此时在光屏前竖直放置厚度为d折射率为的平板玻璃,激光亮点从光屏上的C点移动到D点(未画出),则间距为( )。A、 B、 C、 D、
-
10、一列机械横波向右传播,在t=0时的波形如图所示,A、B两质点间距为8m,B、C两质点在平衡位置的间距为3m,当t=1s时,质点C恰好通过平衡位置,则该波的波速可能为( )。A、2m/s B、3m/s C、5m/s D、4m/s
-
11、一群处于n=4能级的氢原子向低能级跃迁过程中发出不同频率的光,照射图乙所示的光电管阴极K,只有频率为νa和νb的光能使它发生光电效应。分别用频率为νa、νb的两个光源照射光电管阴极K,测得电流随电压变化的图像如图丙所示。下列说法正确的是( )。A、图乙中,用频率νb的光照射时,将滑片P向右滑动,电流表示数一定增大 B、图甲中,氢原子向低能级跃迁一共发出4种不同频率的光 C、图丙中,图线a所表示的光的光子能量为12.09eV D、a光光子动量大于b光光子动量
-
12、气体分子的平均平动动能与热力学温度之间的关系为 , 式中是玻尔兹曼常数,是一个关于温度及能量的常数。用国际单位制中的基本单位表示的单位是( )A、 B、 C、/℃ D、
-
13、如图,木板A放置在光滑水平桌面上,通过两根相同的水平轻弹簧M、N与桌面上的两个固定挡板相连。小物块B放在A的最左端,通过一条跨过轻质定滑轮的轻绳与带正电的小球C相连,轻绳绝缘且不可伸长,B与滑轮间的绳子与桌面平行。桌面右侧存在一竖直向上的匀强电场,A、B、C均静止,M、N处于原长状态,轻绳处于自然伸直状态。时撤去电场,C向下加速运动,下降后开始匀速运动,C开始做匀速运动瞬间弹簧N的弹性势能为。已知A、B、C的质量分别为、、 , 小球C的带电量为 , 重力加速度大小取 , 最大静摩擦力等于滑动摩擦力,弹簧始终处在弹性限度内,轻绳与滑轮间的摩擦力不计。(1)、求匀强电场的场强大小;(2)、求A与B间的滑动摩擦因数及C做匀速运动时的速度大小;(3)、若时电场方向改为竖直向下,当B与A即将发生相对滑动瞬间撤去电场,A、B继续向右运动,一段时间后,A从右向左运动。求A第一次从右向左运动过程中最大速度的大小。(整个过程B未与A脱离,C未与地面相碰)
-
14、如图,直角坐标系中,第Ⅰ象限内存在垂直纸面向外的匀强磁场。第Ⅱ、Ⅲ象限中有两平行板电容器、 , 其中垂直轴放置,极板与轴相交处存在小孔、;垂直轴放置,上、下极板右端分别紧贴轴上的、点。一带电粒子从静止释放,经电场直线加速后从射出,紧贴下极板进入 , 而后从进入第Ⅰ象限;经磁场偏转后恰好垂直轴离开,运动轨迹如图中虚线所示。已知粒子质量为、带电量为 , 、间距离为 , 、的板间电压大小均为 , 板间电场视为匀强电场,不计重力,忽略边缘效应。求:(1)、粒子经过时的速度大小;(2)、粒子经过时速度方向与轴正向的夹角;(3)、磁场的磁感应强度大小。
-
15、某实验小组探究不同电压下红光和蓝光发光元件的电阻变化规律,并设计一款彩光电路。所用器材有:红光和蓝光发光元件各一个、电流表(量程30mA)、电压表(量程3V)、滑动变阻器(最大阻值20Ω,额定电流1A)、5号电池(电动势1.5V)两节、开关、导线若干。
(1)图(a)为发光元件的电阻测量电路图,按图接好电路;
(2)滑动变阻器滑片先置于(填“a”或“b”)端,再接通开关S,多次改变滑动变阻器滑片的位置,记录对应的电流表示数I和电压表示数U;
(3)某次电流表示数为10.0mA时,电压表示数如图(b)所示,示数为V,此时发光元件的电阻为Ω(结果保留3位有效数字);
(4)测得红光和蓝光发光元件的伏安特性曲线如图(c)中的Ⅰ和Ⅱ所示。从曲线可知,电流在1.0~18.0mA范围内,两个发光元件的电阻随电压变化的关系均是:;
(5)根据所测伏安特性曲线,实验小组设计一款电路,可使红光和蓝光发光元件同时在10.0mA的电流下工作。在图(d)中补充两条导线完成电路设计。
-
16、某小组基于动量守恒定律测量玩具枪子弹离开枪口的速度大小,实验装置如图(a)所示。所用器材有:玩具枪、玩具子弹、装有挡光片的小车、轨道、光电门、光电计时器、十分度游标卡尺、电子秤等。实验步骤如下:
(1)用电子秤分别测量小车的质量M和子弹的质量m;
(2)用游标卡尺测量挡光片宽度d,示数如图(b)所示,宽度d= cm;
(3)平衡小车沿轨道滑行过程中的阻力。在轨道上安装光电门A和B,让装有挡光片的小车以一定初速度由右向左运动,若测得挡光片经过A、B的挡光时间分别为13.56ms、17.90ms,则应适当调高轨道的(填“左”或“右”)端。经过多次调整,直至挡光时间相等;
(4)让小车处于A的右侧,枪口靠近小车,发射子弹,使子弹沿轨道方向射出并粘在小车上,小车向左运动经过光电门A,测得挡光片经过A的挡光时间;
(5)根据上述测量数据,利用公式v=(用d、m、M、表示)即可得到子弹离开枪口的速度大小v;
(6)重复步骤(4)五次,并计算出每次的v值,填入下表;
次数
1
2
3
4
5
速度v()
59.1
60.9
60.3
58.7
59.5
(7)根据表中数据,可得子弹速度大小v的平均值为m/s。(结果保留3位有效数字)
-
17、如图,圆心为点、半径为的圆周上有、、、、、、、八个等分点,点固定有一带电量为()的点电荷,其余各点均固定有带电量为的点电荷。已知静电力常量为 , 则点的电场强度大小为。、分别为、的中点,则点的电势(填“大于”“等于”或“小于”)点的电势;将一带电量为()的点电荷从点沿图中弧线移动到点,电场力对该点电荷所做的总功(填“大于零”“等于零”或“小于零”)。
-
18、镀有反射膜的三棱镜常用在激光器中进行波长的选择。如图,一束复色光以一定入射角()进入棱镜后,不同颜色的光以不同角度折射,只有折射后垂直入射到反射膜的光才能原路返回形成激光输出。若复色光含蓝、绿光,已知棱镜对蓝光的折射率大于绿光,则蓝光在棱镜中的折射角(填“大于”“等于”或“小于”)绿光的折射角;若激光器输出的是蓝光,当要调为绿光输出时,需将棱镜以过入射点且垂直纸面的轴(填“顺时针”或“逆时针”)转动一小角度。
-
19、夜间环境温度为时,某汽车轮胎的胎压为个标准大气压,胎内气体视为理想气体,温度与环境温度相同,体积和质量都保持不变。次日中午,环境温度升至 , 此时胎压为个标准大气压,胎内气体的内能(填“大于”“等于”或“小于”)时的内能。(计算时取)
-
20、拓扑结构在现代物理学中具有广泛的应用。现有一条绝缘纸带,两条平行长边镶有铜丝,将纸带一端扭转180°,与另一端连接,形成拓扑结构的莫比乌斯环,如图所示。连接后,纸环边缘的铜丝形成闭合回路,纸环围合部分可近似为半径为R的扁平圆柱。现有一匀强磁场从圆柱中心区域垂直其底面穿过,磁场区域的边界是半径为r的圆(r < R)。若磁感应强度大小B随时间t的变化关系为B = kt(k为常量),则回路中产生的感应电动势大小为( )A、0 B、kπR2 C、2kπr2 D、2kπR2