相关试卷

  • 1、抛物线x2=y的焦点坐标是.
  • 2、在正方体ABCDA1B1C1D1中,AQ=mAB+mAD+nAA1m,n0,1),则(     )
    A、AQBD B、当点Q在平面A1B1C1D1内时,m=1 C、BD1与平面QAC所成角的正切值为2 D、m=12时,四棱锥QABB1A1的体积为定值
  • 3、下列命题正确的是(     )
    A、直线y=kx2y轴的截距是2 B、直线x3y+1=0的倾斜角为30° C、过点(5,4)且倾斜角为90°的直线方程为x5=0 D、过点P(1,2)的直线lx轴,y轴正半轴分别交于AB两点,则OABO为坐标原点)面积的最小值为4
  • 4、双曲线C:x2a2y2b2=1a>0b>0)的左、右焦点为F1F2 , 过F1的直线与C的左支交于P,Q两点,若PF2=F1F2 , 且5PF1=3F1Q , 则双曲线的离心率为(     )
    A、32 B、53 C、75 D、2
  • 5、已知直线l1kxy=0与直线l2x+kyk1=0相交于点P,若点P始终在圆(xa)2+(ya)2=2内,则a的取值范围为(     )
    A、32,32 B、(2,2) C、32,2 D、(0,1)
  • 6、圆x2+y2=3与圆x2+y22x2ym=0的公共弦所在的直线与两坐标轴所围成的三角形面积为2,则m的值为(     )
    A、1 B、3 C、7或1 D、1或3
  • 7、已知直线l经过A1,2B1,4两点,则直线l的倾斜角为(       ).
    A、π6 B、π4 C、2π3 D、3π4
  • 8、命题“xNx20”的否定是(     )
    A、xNx2<0 B、xNx2<0 C、xNx2<0 D、xNx20
  • 9、已知双曲线C:y2a2x2=1(a0)的焦距为102 , 则C的渐近线方程为(        )
    A、y=±7x B、y=±17x C、y=±7x D、y=±77x
  • 10、已知函数f(x)=ex+mx1mR),g(x)=ln(x+1)
    (1)、求函数f(x)的极值;
    (2)、若f(x)+g(x)0对任意的x[0,+)恒成立,求实数m的取值范围;
    (3)、求证:x>0时,g(x)>x2ex1
  • 11、已知各项为正数的数列an满足:a1=1,Sn=anan+12an+1an , 其中Sn是数列an的前n项和.
    (1)、求数列an的通项公式;
    (2)、设bn=a1Cn1+a2Cn2+a3Cn3++anCnn

    (ⅰ)求数列bn的通项公式及其前n项和Tn

    (ⅱ)若cn=2bnani=1ndi=i=1cn11ai , 证明:dn1

  • 12、已知椭圆E:x2a2+y2b2=1(a>b>0)的左焦点为F1 , 右焦点为F2 , 离心率e=12 . 过F2且斜率为k(k0)的直线交椭圆EAB两点,ABF1的周长为8
    (1)、求椭圆E的方程;
    (2)、过点F2且垂直于x的直线与椭圆E的一个交点为P(Px轴上方),过点P且平行于AB的直线l与椭圆E交于另一点Q , 问:是否存在直线l , 使得四边形PABQ为平行四边形?若存在,求出此时四边形PABQ的面积;若不存在,说明理由.
  • 13、如图,AE平面ABCDCF//AEAD//BCADABAB=AD=2AE=BC=2CF=4

    (1)、求证:BF//平面ADE
    (2)、求平面ADE与平面BDF夹角的余弦值;
    (3)、求四面体B-DEF的体积.
  • 14、在ABC中,内角ABC所对的边分别为abc , 且b>c2acosA=bcosC+ccosBABC的面积为123a=213
    (1)、求A的值;
    (2)、求b的值;
    (3)、求cos2B+A的值.
  • 15、已知函数fx=ax2+8x+1aR , 若关于x的方程fx+1a(2x+1)11ax+4=0恰有4个不相等的实数根,则实数a的取值范围是
  • 16、已知平行四边形ABCD的面积为103ABC=π3E为线段BC的中点.若F为线段DE上的一点,且AF=λAB+23BC , 则λ=AF的最小值为
  • 17、中国是瓷器的故乡,瓷器的发明是中华民族对世界文明的伟大贡献,瓷器传承着中国文化,有很高的欣赏和收藏价值.现有一批同规格的瓷器,由甲、乙、丙三家瓷器厂生产,其中甲、乙、丙瓷器厂分别生产400件、400件、200件,而且甲、乙、丙瓷器厂的次品率依次为500,400,400 . 现从这批瓷器中任取一件,取到次品的概率是 , 若取到的是次品,则其来自甲厂的概率为
  • 18、已知aR , 直线l:(a+1)x+2y2a=0恒过定点P , 圆C的圆心与点P关于直线y=x对称,直线l':2x+y5=0与圆C相交于A,B两点,且|AB|=2 , 则圆C的半径为
  • 19、x21x5的展开式中,x2的系数为
  • 20、复数z=2+i1i2i(其中i为虚数单位),则z的虚部为
上一页 915 916 917 918 919 下一页 跳转