相关试卷
-
1、在正方体中,若为的中点,则等于( )A、 B、 C、 D、
-
2、下列求导运算正确的是( )A、 B、 C、 D、
-
3、已知数列满足: , , 则等于( )A、4 B、5 C、6 D、7
-
4、已知曲线 , 过上点作两条互相垂直的直线 , 其中与的另一交点为 , 与的另一交点为 .(1)、写出曲线的对称轴(不需证明)(2)、证明:曲线是双曲线;(3)、若到直线的距离为 , 求直线的方程.
-
5、已知数列的前项和为 , 且 ,(1)、证明是等差数列;(2)、求;(3)、求证:
-
6、如图,在五面体中,为边长为2的等边三角形,平面 , , .(1)、求证:平面平面;(2)、若直线与平面所成角的正切值为 , 求平面BDE与平面ABC所成锐二面角的余弦值.
-
7、2025年,某社区举行“迎新春”足球赛,现从6名大学生中(男生4人,女生2人),任选3人作为幸运首发球员.(1)、设“女生甲被选中”为事件 , “男生乙被选中”为事件 , 求;(2)、设所选3人中男生人数为 , 求随机变量的分布列和数学期望.
-
8、已知椭圆的左、右焦点分别为和 , 下顶点为 , 直线交椭圆于点 , 的内切圆与相切于点 , 若 , 则椭圆的离心率为 .
-
9、已知 , , 则 .
-
10、的展开式中项的系数为 .
-
11、如图,在边长为4的正方体中,分别是棱的中点,是底面内的动点(包含边界),则下列结论正确的是( )A、存在满足 B、若平面 , 则点的轨迹长度为 C、若 , 则点到平面距离最小值为 D、若是棱的中点,则三棱锥的外接球的表面积是
-
12、已知抛物线的焦点到准线的距离为2,过点的直线与抛物线交于 , 两点,设为坐标原点,则( )A、 B、 C、 D、若在抛物线准线上的射影为 , 则三点共线
-
13、已知函数的部分图象如图所示,其中 , , 则( )A、 B、 C、函数有5个零点 D、在上单调递增
-
14、一枚质地不均匀的正四面体骰子,各面分别标有1,2,3,4,掷出点数朝下为1,2,3,4点的概率依次成等差数列,独立地先后掷该骰子两次,所得的点数分别记为 , 若事件“”发生的概率为则事件“”发生的概率为( )A、 B、 C、 D、
-
15、已知平面四边形中, , , , 若平面四边形绕旋转一周得到一个几何体,则该几何体的体积为( )A、 B、 C、 D、
-
16、已知是等比数列,则“ , , ”是“是递增数列”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
-
17、若直线与曲线相切,则( )A、 B、1 C、 D、
-
18、已知集合 , , 若 , 则实数的取值范围是( )A、 B、 C、 D、
-
19、在复平面内,复数与对应的点关于实轴对称,则( )A、 B、 C、 D、
-
20、在光学中,透镜的设计需要考虑光线的传播路径.假设光线的传播路径由函数描述,光线的曲率决定了光线的聚焦能力.曲率越大,光线的聚焦能力越强;曲率为零时,光线无聚焦能力.曲率的计算公式为: .
其中,是函数的导函数,是函数的导函数.通过分析光线的曲率,可以优化透镜的设计,使其在不同位置具有不同的聚焦能力.已知函数 , 定义在区间上.假设光线的传播路径由该函数描述,光线的曲率决定其聚焦能力.
(1)、若 , 求函数在处的曲率k;(2)、已知实数 , 对于任意的 , 若恒成立,i.求a的值;
ⅱ.证明:对于任意 , 曲率满足不等式 , 并解释其光学意义.(参考数据:)