相关试卷

  • 1、若复数z满足z=53i , 则z的虚部是(       )
    A、3 B、3 C、3i D、3i
  • 2、如图,在四面体PABC中,PA平面ABC,ACCB,PA=AC=2BC=2 , 则此四面体的外接球表面积为(       )

    A、3π B、9π C、36π D、48π
  • 3、恰逢盛世,风调雨顺.某稻米产地今秋获得大丰收,为促进当地某品牌大米销售,甲、乙两位驻村干部通过直播宣传销售所驻村生产的该品牌大米.通过在某时段100名顾客在观看直播后选择在甲、乙两位驻村干部的直播间(下简称甲直播间、乙直播间)购买的情况进行调查(假定每人只在一个直播间购买大米),得到以下数据:

    网民类型

    在直播间购买大米的情况

    合计

    在甲直播间购买

    在乙直播间购买

    本地区网民




    外地区网民

    30


    45

    合计


    20

    100

    (1)、补全2×2列联表,并判断依据小概率值α=0.005的独立性检验,能否认为网民选择在甲、乙直播间购买大米与网民所处地区有关;
    (2)、用样本分布的频率分布估计总体分布的概率,若共有100000名网民在甲、乙直播间购买大米,且网民选择在甲、乙两个直播间购买大米互不影响,记其中在甲直播间购买大米的网民数为X , 求使事件“X=k”的概率取最大值时k的值.

    附:χ2=nadbc2a+bc+da+cb+d , 其中n=a+b+c+d.

    a

    0.1

    0.05

    0.01

    0.005

    xn

    2.706

    3.841

    6.635

    7.879

  • 4、记数列an的前n项和为Sn.
    (1)、设a1=1 , 若Sn=2an1 , 求an的通项公式;
    (2)、记fx=1+x+x2+x3+...+xn , 设an=f'2 , 求Sn.
  • 5、在三棱锥SABC中,底面ABC是正三角形且SA=SB=SCMSC的中点,且AMSB , 底面边长AB=22 , 则三棱锥SABC外接球的表面积为
  • 6、在二项式x2+2x6的展开式中,x3项的二项式系数为
  • 7、已知F(2,0)是抛物线C:y2=2px的焦点,M是C上的点,O为坐标原点.则(     )
    A、p=4 B、|MF||OF| C、以M为圆心且过F的圆与C的准线相切 D、OFM=120°时,OFM的面积为23
  • 8、已知函数fx=2sinωx+φω>0,φ<π2 , 将f(x)的图象向右平移π6个单位后,关于y轴对称,此时与y轴最接近的一个极大值坐标为π2,2 , 下列说法错误的是(       )
    A、fx的一条对称轴为x=5π12 B、fx=1(0,π)2个根 C、fx与直线y=x3个交点 D、fx关于7π12,0中心对称
  • 9、已知点P为椭圆Cx2a2+y2b2=1a>b>0上一点,F1F2分别为C的左,右焦点,若半径b的圆M同时与F1P的延长线、F1F2的延长线以及线段PF2相切,若tanPF1F2=43 , 则椭圆C的离心率为(       )
    A、35 B、45 C、22 D、32
  • 10、若变量x,y满足限制条件x2+y24x2y+20y0 , 则目标函数z=xy2的最大值为(       )
    A、2 B、1.36 C、1.36 D、2
  • 11、若圆Cx2+y2=4恰有3个点到直线xy+m=0的距离为1,则m=(       )
    A、4 B、16 C、2 D、8
  • 12、如图,已知四棱锥PABCD的底面ABCD是平行四边形,侧面PAB是等边三角形,BC=2AB=4ABACPBAC.请用空间向量的知识解答下列问题:

    (1)、求PD与平面PAB所成角的大小;
    (2)、设Q为侧棱PD上一点,四边形BEQF是过B,Q两点的截面,且AC//平面BEQF , 是否存在点Q,使得平面BEQF与平面PAD夹角的余弦值为3535?若存在,求DQDP的值;若不存在,说明理由.
  • 13、“0<x<1”是“|x(x1)|=x(1x)”的(       )
    A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
  • 14、已知函数fx=exx , 则函数fx的最小值为(       )
    A、1e B、1 C、e1 D、e
  • 15、已知向量a,b满足a=2,b=2,1,a+b=1 , 则ab上的投影向量的坐标为
  • 16、如图,在平面四边形ABCD中,∠ABC=3π4 , AB⊥AD,AB=1.

       

    (1)若AC=5 , 求ABC的面积;

    (2)若∠ADC=π6 , CD=4,求sin∠CAD.

  • 17、如图所示正方体ABCDA1B1C1D1中的棱长为a , 连A1C1,A1D,A1B,BD,BC1,C1D得到三棱锥A1BC1D

    (1)、求三棱锥A1BC1D表面积与正方体表面积之比
    (2)、求三棱锥A1BC1D的体积
  • 18、已知|CB|=n,|CA|=mCBCA=0(m>0,n>0)

    (1)、若DAB中点,求证:CD=12AB
    (2)、若ECD的中点,连接AE延长交BCF , 用CB,CA表示AF , 并求|AF|.
  • 19、已知复数z=bi(bR)z21+i是纯虚数
    (1)、求复数z的共轭复数z¯
    (2)、若复数(m+z)2所对应的点在第二象限,求实数m的取值范围.
  • 20、ABC中有b2=ac,a2+bc=c2+ac , 则cbsinB=.
上一页 367 368 369 370 371 下一页 跳转