相关试卷

  • 1、在菱形ABCD中,AB=4BAD=π3 , E,F分别为AD,CD的中点,则BEBF=.
  • 2、已知圆M:x2+y24x+3=0 , 点P为直线l:x=my2y轴的交点,过点P作圆M的两条切线,切点分别为AB , 直线ABMP交于点C , 则(     )
    A、若直线l与圆M相切,则m=±15 B、m=1时,四边形PAMB的面积为6 C、PAPB的取值范围为32+ D、已知点Q740 , 则CQ为定值14
  • 3、设函数fx=sinωx+π6(ω>0) , 已知fx02π有且仅有3个零点,则(     )
    A、fx0,2π有且仅有2个极大值点 B、fx0,2π有且仅有1个极小值点 C、fx0,π6单调递增 D、fxπ5,π2单调递减,则ω的最小值为2
  • 4、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别用事件A1,A2A3表示从甲罐中取出的球是红球,白球和黑球;再从乙罐中随机取出一球,用事件B表示从乙罐中取出的球是红球,则下列结论正确的是(       )
    A、P(B)=25 B、PB|A1=511 C、事件B与事件A1相互独立 D、A1,A2,A3是两两互斥的事件
  • 5、已知函数fx的定义域为12,2 , 对于x12,1 , 满足fxf2x=98 , 且当x1,2时,fx=1x2+12.若函数y=ffx+a21(a>0)恰有两个不同的零点,则实数a的取值范围为(     )
    A、34,32 B、34,32 C、0,26 D、0,26
  • 6、在三棱锥PABC中,已知PA=BC=3PC=AB=5PB=AC=6 , 则该三棱锥的体积为(     )
    A、223 B、423 C、10 D、310
  • 7、已知双曲线C:x2a2y2b2=1a>0,b>0的左、右焦点分别为F1,F2 , 以F1F2为直径的圆与C的一条渐近线交于点A , 若AF1=3AF2 , 则C的离心率为(       )
    A、5 B、2 C、3 D、2
  • 8、已知a>b>c , 则下列结论正确的是(     )
    A、ac>bc B、b+ca+c>ba C、ac>bc D、a-c2(a-b)(b-c)
  • 9、设集合A=2,1,0,1,2B=x|x2x+20 , 则AB=(     )
    A、1,0,1 B、1,0,1,2 C、2,1,0,1 D、2,1,0,1,2
  • 10、设数列an的前n项和为Sn , 若存在实数R>0 , 使得点an,Sn位于平面直角坐标系上以原点为圆心,半径为R的圆内(含边界),则称数列an具有“R圆性质”.
    (1)、设数列an是首项与公比均为1的等比数列,证明:数列an具有“2圆性质”.
    (2)、若各项均为非负整数的数列an具有“R圆性质”,证明:数列an中非零的项数不超过R.
    (3)、设随机变量Xn等可能地取1,0,1n=1,2, , 且不同的Xn的取值是相互独立的.对于正整数m , 定义数列Am:前m项为X1,X2,,Xm , 从第m+1项起各项均为0.记数列Am具有“2圆性质”的概率为pm , 证明:对任意正整数m,pm23m1.
  • 11、已知函数fx=a2ex3ax+2sinx,a0.
    (1)、当a=1时,求曲线y=fx在点0,f0处的切线方程;
    (2)、若a>2 , 且fx0,+上单调递增,求a的取值范围;
    (3)、证明:当a1,+时,fxcosx.
  • 12、已知抛物线E:y2=axa>0,PE上一动点,且点P与点A1,0之间的最小距离为32.
    (1)、求抛物线E的方程;
    (2)、连接P,A并延长交抛物线E于另一点Q , 若PQ=2OQO是原点),求点P的横坐标.
  • 13、已知ABC的内角A,B,C的对边分别为a,b,c,a=2b,c=3,cosA=55.
    (1)、求sinB
    (2)、求ABC的面积;
    (3)、求cosCB的值.
  • 14、如图,在正方体ABCDA1B1C1D1中,EAC的中点.

    (1)、求证:A1EB1D1.
    (2)、求直线A1E与平面ACD1所成角的余弦值.
  • 15、已知定义在R上的奇函数fx和偶函数gx满足fx+gx=2+cosx+sinx , 且sinα+cosβ=3,cosα+sinβ=0 , 则fα+β=.
  • 16、某公司有5名员工要去参加A,B,C三项工作,每项工作都至少需要一人参加,且每人的精力只够参加一项工作,一共有种不同的安排方案.
  • 17、已知圆台O1O2 , 其上底面圆O1的直径为2,下底面圆O2的直径为8,母线长为5,则该圆台的体积为.
  • 18、某同学在学习了椭圆的标准方程后得到启发,借助几何画板画出了平面上到点F11,0,F21,0的距离的倒数之和等于1的点P的轨迹,如图所示,则(       )

    A、2PF12+2 B、PO的最小值为2 C、当点P不在坐标轴上时,点P在椭圆x24+y23=1的外部 D、当点P的坐标为x0,y0时,PF1PF2随着x0的增大而增大
  • 19、已知函数fx=x3ax23xa>0 , 则(       )
    A、fx有两个极值点 B、fx在区间0,1上单调递减 C、fx的图象上不存在关于0,1对称的两点 D、fx的极小值大于7时,a的取值范围为0,94
  • 20、某汽车公司为了宣传A,B两款新能源汽车,邀请8名业内人士试驾,就新款汽车的驾乘感受进行评分,最高分数为10分.试驾结束后,评分如下表:

    A

    9.9

    9.5

    9.6

    9.4

    9.7

    9.8

    9.9

    9.7

    B

    9.7

    9.5

    9.8

    9.7

    9.7

    9.9

    9.8

    9.6

    下列说法正确的是(       )

    A、A,B两款汽车评分数据的众数相同 B、A,B两款汽车评分数据的中位数相同 C、若将评分数据乘以10,则新数据的方差为原数据的方差的10倍 D、A款汽车评分数据去掉一个最低分和一个最高分后所得数据的极差小于原数据的极差
上一页 28 29 30 31 32 下一页 跳转