相关试卷
-
1、某学校兴趣学习小组从全年级抽查了部分男生和部分女生的期中考试数学成绩,并算得这部分同学的平均分以及男生和女生各自的平均分 ,且男女生的平均分不相等,由于记录员的疏忽把人数弄丢了,则据此可确定的是( )A、这部分同学是高分人数多还是低分人数多 B、这部分同学是男生多还是女生多 C、这部分同学的总人数 D、全年级是男生多还是女生多
-
2、已知函数(其中)的部分图象如图所示,点是函数图象与轴的交点,点是函数图象的最高点,且是边长为2的正三角形, , 则( )
A、 B、 C、 D、 -
3、已知四边形 中, ,则四边形 的面积为( )A、3 B、5 C、6 D、10
-
4、已知两条不同的直线 和三个不同的平面 ,下列判断正确的是( )A、若 , 则 B、若 , 则 C、若 , 则 D、若 , 则
-
5、已知向量不共线,若则( )A、 B、 C、 D、2
-
6、已知 , 则( )A、 B、 C、 D、
-
7、( )A、 B、 C、 D、
-
8、已知函数 , 记 , 且 ,(1)、求 , ;(2)、设 , ,
(i)证明:数列是等差数列;
(ii)求数列的前n项和 .
-
9、已知椭圆C:()过点 , , 为椭圆的左右顶点, , 为椭圆的下顶点和上顶点,P是椭圆C上不同于 , 的动点,直线 , 的斜率分别为 , , 满足
(1)、求椭圆C的方程:(2)、若点P是椭圆上第一象限内的一点,直线OP交椭圆C于另一点Q,求四边形的面积的取值范围. -
10、在矩形中, , 点P是线段的中点,将沿折起到位置(如图),使得平面平面 , 点Q是线段的中点.
(1)、证明:平面;(2)、求平面与平面所成角的余弦值. -
11、已知双曲线 , O为坐标原点,离心率 , 点在双曲线上.
(1)、求双曲线的方程;(2)、如图,若直线与双曲线的左、右两支分别交于点Q,P,且.求证:为定值; -
12、已知正项数列的前项和 , 满足: .(1)、求数列的通项公式;(2)、记 , 设数列的前项和为 , 求证 .
-
13、已知圆 , 点 .(1)、过点作直线与圆交于 , 两点,若 , 求直线的方程;(2)、若圆经过点 , 且与圆相切于点 , 求圆的方程.
-
14、某同学画“切面圆柱体”(用与圆柱底面不平行的平面切圆柱,底面与切面之间的部分叫做切面圆柱体),发现切面与圆柱侧面的交线是一椭圆(如图所示).若该同学所画的椭圆的离心率为 , 则“切面”所在平面与底面所成锐二面角的大小为 .
-
15、已知抛物线C:的焦点为F,准线为l,过F的直线交抛物线C于A,B两点,的中垂线分别交l与x轴于D,E两点(D,E在的两侧).若四边形为菱形,则
-
16、设函数在处存在导数为 , 则
-
17、如图,已知椭圆: , 过抛物线: 的焦点F的直线交抛物线于M,N两点,连接NO,MO并延长分别交于A、B两点,连接AB,与 的面积分别记为、 ,则在下列结论中正确的为( )
A、若记直线NO,MO的斜率分别为则 的大小是定值 B、的面积 =2 C、设 则 D、为定值5 -
18、如图,某工艺品是一个多面体 , 点两两互相垂直,且位于平面的异侧,则下列命题正确的有( )
A、异面直线与所成角的余弦值为 B、当点为的中点时,线段的最小值为 C、工艺品的体积为 D、工艺品可以完全内置于表面积为的球内 -
19、已知圆 , 圆 , 则下列说法正确的是( )A、点在圆内 B、圆上的点到直线的最小距离为1 C、圆和圆的公切线长为2 D、圆和圆的公共弦所在的直线方程为
-
20、已知双曲线()的左、右焦点分别为为双曲线上的一点,为的内心,且 , 则的离心率为( )A、3 B、 C、 D、