相关试卷
-
1、已知函数 , 则( )A、只有1个零点 B、在单调递增 C、曲线在点处切线的斜率为 D、是偶函数
-
2、已知函数 , 若 , 则的最大值和最小值分别是( )A、 B、 C、 D、
-
3、设 , , , 则( )A、 B、 C、 D、
-
4、已知函数 , 则函数的图象的对称中心的坐标为( )A、 B、 C、 D、
-
5、下列函数为奇函数的是( )A、 B、 C、 D、
-
6、已知集合 , 则( )A、 B、 C、 D、
-
7、已知函数 , 其中.(1)、当时,求曲线在点处的切线方程;(2)、当时,令 , 求函数在区间上的最大值;(3)、记为的从小到大的第个极值点,若对一切恒成立,求的取值范围.
-
8、已知函数.(1)、讨论函数在区间上的最大值;(2)、当时,不等式恒成立,求实数的取值范围.
-
9、设函数.(1)、若 , 求的值.(2)、若 , 且在区间上为增函数,求的最大值.(3)、已知在区间上单调递增, , 再从条件①、条件②这两个条件中选择一个作为已知,求的值.条件①:在区间上单调递减;条件②:.
注:如果选择多个符合要求的条件分别解答,按第一个解答计分.
-
10、已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件需另投入2.7万元,设该公司年内共生产该品牌服装千件并全部销售完,销售收入为万元,且.
(注:年利润=年销售收入年总成本)
(1)、写出年利润W(万元)关于年产量(千件)的函数解析式;(2)、年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大? -
11、已知为锐角,.(1)、求与的值;(2)、求的值.
-
12、设 , 记为平行四边形内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数的值域为.
-
13、若函数对恒成立,则的取值范围是.
-
14、定义:实数满足 , 则称比远离.已知函数的定义域为 , 任取等于和中远离0的那个值,则( )A、是偶函数 B、的值域为 C、在上单调递增 D、在上单调递减
-
15、已知函数 , 其中 , 为实数,则下列条件能使函数仅有一个零点的是( )A、 , B、 , C、 , D、 ,
-
16、已知 , 且 , 则下列一定正确的是( )A、 B、 C、 D、
-
17、已知实数x,y满足: , , 则的值是( ).A、1 B、2 C、 D、
-
18、如图,四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数 , , 的图像如下.结果发现其中有一位同学作出的图像有错误,那么有错误的图像是A、
B、
C、
D、
-
19、直线与函数和的图象都相切,则( )A、2 B、 C、 D、
-
20、已知角的终边过点 , 则( )A、 B、 C、 D、