• 1、已知函数fx=12sin2x.若曲线y=fx在点Ax1,fx1处的切线与其在点Bx2,fx2处的切线相互垂直,则x1x2的一个取值为.
  • 2、设z¯为复数z的共轭复数,若复数z满足z2+z+3=0 , 则z+z¯=
  • 3、已知函数fx=1x+1+1xx , 设x1,x2,x3是曲线y=fx与直线y=a的三个交点的横坐标,且x1<x2<x3 , 则(       )
    A、存在实数a , 使得x2x1>1 B、对任意实数a , 都有x3x1>3 C、存在实数a , 使得x3x2>3 D、对任意实数a , 都有x3x2>1
  • 4、知名数学教育家单墫曾为中学生写了一个小册子《十个有趣的数学问题》,其中提到了开普勒的将球装箱的方法:考虑一个棱长为2的正方体,分别以该正方体的8个顶点及6个面的中心为球心作半径为22的球,这些球在正方体内的体积之和与正方体的体积之比为(       )
    A、423π B、223π C、23π D、26π
  • 5、已知函数fx=2x8xxax(a>0a1)是偶函数,则a=(     )
    A、12 B、14 C、2 D、4
  • 6、已知函数f(x)=(x2)exa3x3+bx2 , 其中a0,b0
    (1)、当a=0,b=0时,

    ①若x3 , 求函数f(x)的最大值;

    ②若直线l是曲线f(x)的切线,且l经过点(t,0) , 证明:|t|2

    (2)、当b>0时,若x=1是函数f(x)的极小值点,求b的取值范围.
  • 7、在数列an中,an+1=an22ann=1,2, , 则(       )
    A、a1=3时,对于任意的正整数n,an+1>an B、a1=1时,存在正整数N , 当n>N时,an+1>an C、a12,3时,对于任意的正整数n,an3 D、a13,4时,存在正整数N , 当n>N时,an<3
  • 8、2024年奥运会在巴黎举行,中国代表团获得了40枚金牌、27枚银牌、24枚铜牌,共91枚奖牌.为了增加学生对奥运知识的了解,弘扬奥运精神,某校组织高二年级学生进行了奥运知识能力测试.根据测试成绩,将所得数据按照40,5050,6060,7070,8080,9090,100分成6组,其频率分布直方图如图所示.

    (1)、求该样本的第80百分位数;
    (2)、试估计本次奥运知识能力测试成绩的平均分(同一组中的数据以该组数据所在区间的中点值为代表);
    (3)、该校准备对本次奥运知识能力测试成绩在60,80内的学生,采用按比例分配的分层随机抽样方法抽出6名同学,再从抽取的这6名同学中随机抽取2名同学了解情况,求这2名同学中,有一人成绩在60,70内,另一人成绩在70,80内的概率.
  • 9、若曲线y=lnx与曲线y=x2+2x+a(x<0)有公切线,则实数a的取值范围是(       )
    A、(ln21,+) B、[ln21,+) C、(ln2+1,+) D、[ln2+1,+)
  • 10、已知等差数列an满足a3+a5=221+2a2=a4 , 数列bn满足bn+12=bnbn+2b2=2b1b4=8.
    (1)、求数列anbn的通项公式;
    (2)、求数列1anan+1的前n项和Sn
    (3)、求数列anbn的前n项和Tn.
  • 11、数学家棣莫弗发现,如果随机变量X服从二项分布Bn,p , 那么当n比较大时,X近似服从正态分布Nμ,σ2 , 其密度函数为φμσx=12πσexμ22σ2xR任意正态分布X~Nμ,σ2 , 可通过变换Z=Xμσ转化为标准正态分布Z~N0,1Z~N0,1时,对任意实数x,记Φx=P(Z<x) , 则(       )
    A、x>0时,P(xZ<x)=12Φx B、Φx+Φx=1 C、随机变量X~Nμ,σ2 , 当μσ都减小时,概率P(Xμ<σ)增大 D、随机变量X~Nμ,σ2 , 当μ增大,σ减小时,概率P(Xμ<σ)保持不变
  • 12、已知向量a=x1,y1b=x2,y2 , 定义新运算:ab=x1x2+y1y2.若函数fx=ab , 则称fx为向量ab的点积函数.例如:向量a=2,xb=cosx,1 , 则向量ab的点积函数fx=2cosxx.
    (1)、若向量m=1,1n=ucosx,vsinxuvR),且向量mn的点积函数fx=2cosx+2sinx , 求n的值;
    (2)、若向量m=sin2x,4n=1,cosx1 , 求向量mn的点积函数gx的值域;
    (3)、若向量m=sin2xπ6,4n=2,cos2x+π3的点积函数为hx , 且存在xπ4,2π3 , 使得2hx+k3成立,求k的取值范围.
  • 13、已知函数fx=mx2mR , 且fx+20的解集为1,1

    (1)求m的值;

    (2)若a,b,cR , 且1a+12b+13c=m , 求证a+2b+3c9

  • 14、(1)已知x>0 , 求y=2xx2+1的最大值.

    (2)已知x>0y>0 , 且2x+3y=6 , 求xy的最大值.

  • 15、已知集合x1,x2,x3,x4,x5,x6=1,2,3,4,5,6 , 将xixj(其中i1,2,3j4,5,6)的乘积xixj放入如图的3×3方格中,则方格中全部数之和的最大值为.

    x1x4

    x1x5

    x1x6

    x2x4

    x2x5

    x2x6

    x3x4

    x3x5

    x3x6

  • 16、一个圆锥恰有三条母线两两夹角为60° , 若该圆锥的侧面积为33π , 则该圆锥的体积为.
  • 17、函数fx=log3ax2xa>1),若fx>11,+上恒成立,则a的取值范围是.
  • 18、双曲线E:x2a2y2=1(a>0)的一条渐近线的斜率为k , 若0<k<1 , 则a的值可能为(       )
    A、12 B、22 C、2 D、2
  • 19、已知a>0b>0 , 且a+b=1 , 则1a+4b的最小值为(       )
    A、9 B、8 C、7 D、6
  • 20、已知函数fx=x2aex+1有两个极值点,则实数a的取值范围是(       )
    A、a0 B、0<a<2e C、0<a2e D、a2e
上一页 76 77 78 79 80 下一页 跳转