相关试卷
-
1、已知是两个非零向量,同时满足 , 则与的夹角为( )A、 B、 C、 D、
-
2、下列各式中,值为的是( )A、 B、 C、 D、
-
3、已知向量 , 则等于( )A、 B、 C、 D、
-
4、已知椭圆 , 短轴长为2,离心率为 , 过点的直线交椭圆于A,B两点,点为椭圆的右顶点(A,B,D三点不共线)(如图1).
(1)、求椭圆的标准方程;(2)、证明:直线与的斜率之积为定值;(3)、以椭圆的长轴为旋转轴,将椭圆旋转 , 得到椭圆(如图2所示,椭圆在平面内,椭圆在平面内),椭圆上是否存在定点 , 使得平面平面恒成立?若存在,求的坐标;若不存在,请说明理由. -
5、已知点是双曲线的一个焦点,且过点.(1)、求双曲线的渐近线方程;(2)、直线与双曲线相交于A,B两点,若 , 求的面积;(3)、直线与双曲线有唯一公共点 , 过点与直线垂直的直线分别交轴,轴于点 , 当运动时,求点的轨迹方程.
-
6、如图,在直三棱柱中,是的中点,是的中点.
(1)、证明:平面;(2)、求直线BC与平面所成角的余弦值. -
7、盘,全称USB闪存驱动器,它是一种使用USB接口的无需物理驱动器的微型高容量移动存储产品,通过USB接口与电脑连接实现即插即用.有一个盒子里装有形状一样,颜色不一样的盘,其中银色盘4个,黑色盘3个,从中任取2个盘.(1)、求取出的2个盘都是黑色盘的概率;(2)、如果是4个银色盘,个黑色盘 , 已知取出的2个盘都是银色的概率为 , 那么是多少?
-
8、已知直线经过两条直线和的交点,且垂直于直线 , 圆经过三点.(1)、求直线与圆的方程;(2)、求直线被圆所截得的弦长.
-
9、江门市某学校举行数学建模比赛,某比赛小组认为鸡蛋的横截面可以看成由椭圆与圆的部分图象组合而成,在平面直角坐标系中,利用半圆和半椭圆围成了一个封闭的图形模拟鸡蛋的横截面(图1),点为半椭圆的焦点,过原点的直线交于点 , 交于点 , 则|AB|的最大值为;点是上一点,点N是半圆与轴的交点(如图2所示),点 , 则的最大值为.

-
10、在空间直角坐标系中,点关于轴的对称点为 , 点关于平面的对称点为 , 若 , 则.
-
11、数据9,15,13,11,12的方差是.
-
12、已知单位向量两两的夹角均为 , 若空间向量满足 , 则有序实数组称为向量在“仿射”坐标系(为坐标原点)下的“仿射”坐标,记作 , 则下列命题是真命题的为( )A、若 , 则 B、若 , 则 C、若 , 则不论取何值,四点都共面 D、若 , 则点到平面的距离为
-
13、已知抛物线的焦点为F,O为原点,点为抛物线上一动点,则下列说法正确的是( )A、抛物线的准线方程是 B、若 , 则 C、过点的直线与抛物线交于两点,若是线段的中点,则 D、点是直线上一动点,则|PQ|的最小值是
-
14、一家水果店的店长为了解本店大泽脐橙的日销售情况,记录了过去10天大泽脐橙的日销售量(单位:kg),结果如下:
下列说法正确的是( )
A、该水果店过去10天大泽脐橙的日销售量的中位数为93 B、该水果店过去10天大泽脐橙的日销售量的平均数大于98 C、该水果店过去10天大泽脐橙的日销售量的极差为37 D、该水果店过去10天大泽脐橙的日销售量的第70百分位数为104 -
15、如图,在棱长为的正四面体(四个面都是正三角形)中, , 分别为 , 的中点,且在方向上的投影向量为 , 则的值为( )
A、 B、 C、 D、 -
16、已知点分别是双曲线的左右焦点,以线段为边作等边三角形 , 线段的中点恰好在双曲线上,则双曲线的离心率为( )A、 B、2 C、 D、
-
17、某款品牌牛奶生产企业开展有奖促销活动:将16盒这种牛奶装一箱,每箱中都放置2盒能够中奖的牛奶.若从一箱中随机抽出2盒,能中奖的概率为( )A、 B、 C、 D、
-
18、在棱长为2的正方体中,为线段的中点,则点到直线AE的距离为( )A、 B、 C、 D、
-
19、已知圆 , 圆 , 则圆与圆的位置关系为( )A、相交 B、相切 C、相离 D、无法判断
-
20、已知 , 且 , 则( )A、 B、 C、11 D、