相关试卷
-
1、若 , 则
-
2、已知函数 , 给出下列四个结论,正确的是( )A、存在无数个零点 B、在上有最大值 C、在区间上是单调递减函数 D、的图象是轴对称图形
-
3、已知是函数的图象上两个不同的点,则( )A、 B、 C、 D、
-
4、下列化简中,正确的是( )A、 B、 C、 D、
-
5、大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v= , 其中表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为( )A、8100 B、900 C、81 D、9
-
6、时,函数与的图象交点个数为( )A、3 B、4 C、5 D、6
-
7、若“ , 使得”是假命题,则实数的取值范围是( )A、 B、 C、 D、
-
8、已知三个函数 , , 的零点依次为a,b,c,则( )A、 B、 C、 D、
-
9、已知 , 那么是( )A、第一、二象限角 B、第二、三象限角 C、第三、四象限角 D、第一、四象限角
-
10、下列函数中,在区间上单调递减的是( )A、 B、 C、 D、
-
11、若集合 , 则( )A、 B、 C、 D、
-
12、已知函数在上可导,其部分图象如图所示,则下列不等式正确的是( )
A、 B、 C、 D、 -
13、有n个首项都是1的等差数列,设第m个数列的第k项为 , 公差为 , 并且成等差数列.(1)、当时,求 , , 以及;(2)、证明( , , 是m的多项式),并求的值;(3)、当 , 时,将数列分组如下:(每组数的个数构成等差数列),设前组中所有数之和为 , 求数列的前n项和.
-
14、已知函数的图象如图所示,不等式的解集是( )
A、 B、 C、 D、 -
15、已知常数为非零整数,若函数 , 满足:对任意 , , , 则称函数为函数.(1)、若函数 , 为函数,求的取值范围;(2)、若为函数,图像在是一条连续的曲线, , , 且在区间上存在唯一的极大值点,求函数最值差的绝对值的取值范围;(3)、若 , , 且为函数,为的一阶导函数,对任意 , , 恒有 , 记的最小值为 , 求的取值范围及关于的表达式.
-
16、已知圆与抛物线交于 , 两点,(1)、求曲线的方程;(2)、设过抛物线焦点的直线交于、两点,过圆心的直线与曲线的另一个交点为 , 点在与之间.
(i)证明:线段垂直于轴:
(ii)记的面积为 , 的面积为 , 求的取值范围.
-
17、2024年12月,为培养适应新时代要求的创新型人才,教育部办公厅发布了关于加强中小学人工智能教育的通知.为了坚持立德树人,全面贯彻党的教育方针,紧扣新时代新征程教育使命,满足面向未来的创新型人才培养需求,提升数字素养与数字技能,某市教育局为了培养学生的科技创新素养,在甲,乙两所高中学校举办了一次人工智能科普知识竞赛,两个学校的学生人数基本相同.已知甲学校学生成绩的优秀率为0.24(优秀:竞赛成绩 , 单位:分),现从乙学校随机抽取100名学生的竞赛成绩,制成如图所示的频率分布直方图.
(1)、从乙学校竞赛分数在中的学生中,采用分层抽样的方法抽取了9人,现从这9人中随机抽取6人,记成绩优秀的学生人数为 , 求的分布列和数学期望;(2)、若从本次参赛的学生中随机抽取1人,以样本的频率估计概率,求此学生竞赛成绩优秀的概率;(3)、现从参与竞赛的学生中随机抽取人,若要使取得最大值(表示人中优秀人数),求的值. -
18、在三棱柱中,底面 , , , 到平面的距离为1.
(1)、证明:平面平面;(2)、已知三棱锥的体积为 , 求与平面所成角的正弦值. -
19、已知函数(为常数).(1)、若曲线在处的切线在两坐标轴上的截距相等,求的值;(2)、是否存在实数 , 使得有3个零点?若存在,求实数的范围;若不存在,请说明理由.
-
20、已知正方形的中心为 , , 现将其沿对角线翻折,使得在面内的射影为的中点,且 , , , 再将绕直线旋转一周得到一个旋转体,则该旋转体的内切球的体积为.