相关试卷
-
1、已知向量 , , .
(1)若点A,B,C共线,求实数m的值;
(2)若△ABC为直角三角形,求实数m的值.
-
2、对于一组数据2,3,3,4,6,6,8,8,则第50百分位数是 .
-
3、堑堵、阳马、鳖臑这些名词出自中国古代的数学名著《九章算术·商功》.如图1,把一块长方体分成相同的两块,得到两个直三棱柱(堑堵).如图2,再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个,其中四棱锥称为阳马,三棱锥称为鳖臑.则( )A、阳马的四个侧面中仅有两个是直角三角形 B、鳖臑的四个面均为直角三角形 C、阳马的体积是鳖臑的体积的两倍 D、堑堵、阳马与鳖臑的外接球的半径都相等
-
4、如图,在棱长为2的正方体中,点E,F,G分别是棱BC, , 的中点,点P为底面上任意一点,若直线BP与平面EFG无公共点,则下列命题中,
①平面EFG
②平面平面
③所有点P在直线上
④BP与所成的角为 , 则的最小值是
正确命题的个数是( )
A、1个 B、2个 C、3个 D、4个 -
5、已知函数 , 方程有3个实数解,则k的取值范围是( )A、 B、 C、 D、
-
6、某中学为了解在校高中学生的身高情况,在高中三个年级各随机抽取了的学生,并分别计算了三个年级抽取学生的平均身高,数据如下表:
年级
高一
高二
高三
抽样人数
36
34
30
平均身高
则该校高中学生的平均身高可估计为( )
A、 B、 C、 D、 -
7、圆台的一个底面周长是另一个底面周长的3倍,母线长为7,圆台的侧面积为 , 则圆台较小底面的半径为( )A、8 B、7 C、5 D、3
-
8、在复平面内,复数对应的点位于( )A、第一象限 B、第二象限 C、第三象限 D、第四象限
-
9、记函数.(1)、证明:;(2)、记的定义域为 . 若任意 , 求的取值范围.
-
10、在正四面体中,点分别在棱上(不与顶点重合),且(1)、若 , 证明(2)、求的取值范围.
-
11、小林有五张卡片,他等概率的在每张卡片上写下1,2,3,4,5中的某个数字.(1)、求五张卡片上的数字都不相同的概率;(2)、证明:这五张卡片上最大的数字最可能是5.
-
12、已知点为抛物线与圆在第一象限的交点,另一交点为.(1)、求;(2)、若点在圆上,直线为抛物线的切线,求的周长.
-
13、当 , 为锐角时,恒有 , 则的取值范围是 .
-
14、函数至多有个零点.
-
15、设一组样本数据满足 , 则( )A、拿走 , 这组数据的方差变大 B、拿走 , 这组数据的方差变大 C、拿走 , 这组数据的方差减小 D、拿走 , 这组数据的方差减小
-
16、若无穷数列由唯一确定,称递推公式是专一的.则下列递推公式中专一的有( )A、 B、 C、 D、
-
17、设双曲线与直线交于与两点,则可能有( )A、 B、 C、 D、
-
18、称平面直角坐标系中横坐标与纵坐标均为正整数的点为好整点,记为集合包含的好整点的个数.若 , 则正整数的最小值是( )A、1976 B、1977 C、 D、
-
19、设椭圆的弦与轴,轴分别交于两点, , 若直线的斜率 , 则的取值范围是( )A、 B、 C、 D、
-
20、小明开始了自己的存钱计划:起初存钱罐中没有钱,小明在第天早上八点以的概率向存钱罐中存入100元, . 若小明在第4天早上七点发现自己前3天晚上八点时存钱罐中的余额恰好成等差数列,则小明在第2天存入了100元概率是( )A、 B、 C、 D、