相关试卷
-
1、函数的定义域为( )A、 B、 C、 D、
-
2、已知全集 , , , ( )A、 B、 C、 D、
-
3、如图,平面平面 , 四边形为正方形,四边形为菱形, , 则直线所成角的余弦值为( )
A、 B、 C、 D、 -
4、定义:若椭圆上的两个点满足 , 则称为该椭圆的一个“共轭点对”,记作.已知椭圆的一个焦点坐标为 , 且椭圆过点.(1)、求椭圆的标准方程;(2)、求“共轭点对”中点所在直线的方程;(3)、设为坐标原点,点在椭圆上,且 , (2)中的直线与椭圆交于两点 , 且点的纵坐标大于0,设四点在椭圆上逆时针排列.证明:四边形的面积小于.
-
5、如图,在正三棱柱中,底面的边长为1,P为棱上一点.
(1)、若 , P为的中点,求异面直线与所成角的大小;(2)、若 , 设二面角、的平面角分别为、 , 求的最值及取到最值时点P的位置. -
6、已知函数 , 若且 , 则的最大值为 .
-
7、已知件次品和件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束,则恰好检测四次停止的概率为(用数字作答).
-
8、已知 , 是函数的两个零点,且 , 当时,最小值与最大值之和为 .
-
9、设函数的定义域为 , 且满足 , , 当时, , 则下列说法正确的是( )A、 B、当时,的取值范围为 C、为奇函数 D、方程仅有6个不同实数解
-
10、如图,设正方体的棱长为 , 点是的中点,点为空间内两点,且 , 则( )
A、若平面 , 则点与点重合 B、设 , 则动点的轨迹长度为 C、平面与平面的夹角的余弦值为 D、若 , 则平面截正方体所得截面的面积为 -
11、已知函数 , 则下列结论正确的有( )A、为奇函数 B、是以为周期的函数 C、的图象关于直线对称 D、时,的最大值为
-
12、设实数 , 若不等式对任意恒成立,则的最小值为( )A、 B、 C、 D、
-
13、如图,边长为2的正方形沿对角线折叠,使 , 则三棱锥的体积为( )
A、 B、 C、 D、4 -
14、已知双曲线的焦点关于渐近线的对称点在双曲线上,则双曲线的离心率为( )A、2 B、 C、 D、
-
15、已知圆 , 直线.则直线被圆截得的弦长的最小值为( )A、 B、 C、 D、
-
16、已知向量 , , 且与夹角不大于 , 则的取值范围为( )A、 B、 C、 D、
-
17、将函数的图像向右平移个单位长度后得到曲线 , 若关于轴对称,则的最小值是( )A、 B、 C、 D、
-
18、已知复数满足 , 则复数( )A、 B、 C、 D、
-
19、设全集为R , 集合 , .(1)、分别求 , ;(2)、已知 , 若 , 求实数a的取值范围.
-
20、已知 , 则的最小值为( )A、 B、 C、 D、