相关试卷
-
1、已知全集 , 或 , .(1)、当时,求;(2)、若 , 求实数的取值范围.
-
2、设是定义在上的奇函数,对任意的; , 满足: , 且 , 则不等式的解集为 .
-
3、写出一个在上单调递减的奇函数 . (答案不唯一)
-
4、已知定义在的函数满足以下条件:
(1)对任意实数恒有;
(2)当时,的值域是
(3)
则下列说法正确的是( )
A、值域为 B、单调递增 C、 D、的解集为 -
5、已知 , 且 , 则的最小值是( )A、2 B、4 C、 D、
-
6、已知 , 且 , 则( )A、2 B、3 C、5 D、7
-
7、函数是定义在上的奇函数,当时, , 则A、 B、 C、 D、
-
8、设若 , 则( )A、1 B、4 C、1或4 D、1或2
-
9、设R,则“”是“”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
-
10、下列命题正确的个数是( )
①命题“所有的四边形都是矩形”是存在量词命题;
②命题“”是全称量词命题;
③命题“”的否定形式是“”
A、0 B、1 C、2 D、3 -
11、命题“ , ”的否定形式是( )A、 , B、 , C、 , D、 ,
-
12、已知集合 , , 则( )A、 B、 C、 D、
-
13、如图,在四面体中, , , .
(1)、求的值;(2)、已知是线段中点,点满足 , 求线段的长. -
14、已知平行六面体 , 化简下列向量表达式,并在图中标出化简得到的向量:
(1)、;(2)、;(3)、. -
15、已知空间向量 , , , 若 , , 共面,则的最小值为 .
-
16、已知是平面的一个法向量,点 , 在平面内,则 .
-
17、如图,四棱柱为正方体.

①直线的一个方向向量为; ②直线的一个方向向量为;
③平面的一个法向量为; ④平面的一个法向量为 .
则上述结论正确的是.(填序号)
-
18、如图,已知点在正方体的对角线上,设 , 则的值为( )
A、 B、 C、 D、 -
19、若直线的方向向量为 , 平面的法向量为 , 且 , 则( )A、 B、 C、 D、
-
20、设 , 向量 , , , 且 , , 则( ).A、 B、 C、5 D、6